Acid-Base Balance and the Anion Gap

Electrical Neutrality

- Cations = Anions
- H⁺ is special
- Bodily acids
 - Volatile = CO₂
 - Non-volatile
 - H₂PO₄
 - H₂CO₃
- Henderson-Hasselbalch

 $pH = 6.1 + log \frac{HCO_3^-}{Pa_{CO_2} \times 0.0301}$

CO₂ and H₂CO₃ Relationship

- Carbonic anhydrase
- Shuttles back and forth

$$\begin{array}{c} O \\ \parallel \\ C \\ \parallel \\ O \end{array} + \begin{array}{c} \text{Carbonic Anhydrase} \\ \downarrow \\ k_{-1} \\ \downarrow \\ O \end{array} \begin{array}{c} O \\ \parallel \\ \downarrow \\ \downarrow \\ C \\ \downarrow \\ O \\ O \\ HO \end{array} \begin{array}{c} O \\ \downarrow \\ \downarrow \\ \downarrow \\ O \\ \downarrow \\ O \\ HO \end{array} + \begin{array}{c} H^+ \\ \downarrow \\ O \\ \downarrow \\ O \\ \downarrow \\ O \\ O \\ HO \end{array}$$

Measurement of pH and PaCO₂

- Arterial blood
- Through the lungs
- **7.35 7.45**
- CNS respiratory control
 - PaCO₂
 - Secondarily H₂CO₃
- Renal contribution
 - Reabsorption of H₂CO₃
 Titratable acid formation

So how do we maintain pH?

- PaCO₂ is maintained at about 40 mmHg
- CNS respiration rate
- Blow off or retain CO₂
- CO₂ production is not subject to regulation
- Renal control is very important.

Renal Contribution

- Reabsorption of filtered H₂CO₃
 - This is recovery
 - Proximal tubule
 - You really didn't mean to get rid of it.
- Formation of titratable acids
- Distal tubule
 Excretion of NH₄+
 - Distal tubule

The distal tubule story.

- Actual secretion of excess H+
- Distal tubular cell
- Formation of titratable acids
 - H₂PO₄-
- Excretion of NH₄+

This is what's working for us

- Keep that bicarb
- Proximal tubule
 - 4000 mmol of H₂CO₃
 - 4000 mmol of H⁺
- What happens if you lose this bicarb?

Primary respiratory and metabolic disturbances

- One cause
- Compensation
- Respiratory
 - Acidosis
 - Alkalosis
- Metabolic
 - Acidosis
 - Alkalosis

If life were that simple.

- Mixed acid-base disorders
- Folks are entitle to more than one medical problem at a time.
- Even acidosis and alkalosis at the same time.
 - What would their pH be?
- What will help
 - Anion gap
 - Bicarbonate gap
 - Chloride concentration

How to figure it out?

- Blood work

 Arterial blood gases
 Serum electrolytes
- Compare HCO3- for accuracy

- Compare HCO₃ for accuracy
 Calculate the anion gap (AG)
 Do some thinking, review

 Causes of high AG acidosis
 Lactic acidosis
 Lactic acidosis
 Renal failure
 Toxic exposure
 Causes of non-gap acidosis
 HCO₂ loss from GI tact
 Renal tubular acidosis
 Compare ΔAG and Δ HCO₃ Compare Change in [CI⁻] and [Na⁺]
 History and physical
- History and physical
 Pulmonary
 Vomiting?
- Medications (diuretics)?
- Sleeping meds

The Anion Gap

- Not really a gap, just the stuff we don't normally measure.
 AG = Na⁺ (Cl⁻ + HCO₃ ⁻), typically about 10 to 12 mmol
- Increased AG
 - Most often due to increased serum lactate or acetoacetate.
 - Rarely due to a decrease in cations such as Ca⁺², magnesium and/or K⁺
- Decreased AG
 - Increase in unmeasured cations
 - Addition of something new to the blood such as Li⁺
 - Reduction in a major plasma protein such as albumin (renal loss).
 - Hyperlipidemias and other less

Simple rules for simple, one cause, acidbase disturbances.

- Metabolic vs. respiratory?
 - Respiratory acidosis, PaCO2 is > 44
 - Metabolic acidosis, HCO3- is < 22
 - Respiratory alkalosis, PaCO2 is < 36
 - Metabolic alkalosis, HCO3- is > 26
- If primary change is:
 - HCO3-, then the underlying cause is most likely metabolic
 - CO2, the underlying cause is most likely respiratory

Metabolic Derangements

- Metabolic Acidosis with anion gap
 - Increased endogenous acid production
 - lactateketoacidosis
 - accumulation of endogenous acids with renal failure

 loss of HCO₃-, diarrhea
 Methanol, antifreeze
- Metabolic acidosis with no ion gap
 loss of HCO₃*, diarrhea
 renal loss of HCO₃*, renal tubular acidosis
 Carbonic anhydrase inhibition
- Metabolic alkalosis
 vomiting
 milk-alkali syndrome

 - K+ wasting as in with Conn's syndrome
 - Loss of H+

 - Our compensate is respiratory

 Retain CO₂

Respiratory Derangements

- Respiratory acidosis
 - CNS
 - Airway obstruction Neuromuscular and faulty
 - respiration
 - CO2 is high and the reason is poor ventilation
 - Compensation must be to increase HCO₃
- Respiratory alkalosis
 - CO₂ is low Pregnancy

 - Sepsis Anxiety and physical pain leading to increased resp rate
 - Salicylates
 - Liver disease

Mixed Acid-Base Disorders

- HCO₃- gap = delta AG delta HCO₃-
 - This is also called the *Delta gap*.
 - Delta AG = patient's AG 12 mEq/L
 Delta HCO₃ = 27 mEq/L patient's HCO₃
- Just one acid-base abnormality, there should be a 1:1 correlation between the rise in the anion gap and a drop in the bicarbonate.
- Example: if the AG goes up by 10, then the HCO₃ should drop by 10.
 - Delta AG delta HCO₃⁻ = 10 10 = 0
 Just one acid-base problem here.
- Variation of the bicarbonate gap from zero, either + or means there is a mixed acid-base problem.

Case: 22 year-old man with vomiting, nausea and abdominal pain

- His blood pressure is low and he has tenting of the skin
 His electrolytes are
- Na+ = 144 Cl- = 95 K+ = 4.2
- $HCO_3^- = 14$. AG = 35
- Delta AG = 23 (35 12)

- Delta AC = 23 (35 − 12)

 Delta HCO₃ = 13 (27 − 14)

 HCO₃ gap = +10 (also called Delta gap)

 The high HCO₃ gap indicates there are two conditions at work.

 Metabolic acidosis from dehydration and poor tissue perfusion (lactatic acid accumulation).

 Metabolic alkaloric from vemiting and loss
- Metabolic alkalosis from vomiting and loss of stomach acid.

Renal Acidosis

- The renal tubules reabsorb HCO₃- and secrete acid.
- Failure of either leads to renal tubular acidosis
- All forms of renal tubular acidosis are characterized by
 - Minimally elevated to normal ion gap
 - Hyperchloremia
 - Net retention of HCl⁻ (generally)
- Three basic patterns ■ Distal type (type 1 RTA)
 - Proximal type (type 2 RTA)
 - Type 3 RTA is absence of carbonic anhydrase
 Hypoalderstonism (type 4 RTA)

Renal Tubular Acidosis

	Type 1 RTA	Type 2 RTA	Type 4 RTA
Primary defect	Impaired distal acidification	Reduced proximal bicarbonate reabsorption	Decreased aldosterone secretion or effect
Plasma bicarbonate	Variable, may be below 10 meq/L	Usually 12 to 20 meg/L	Greater than 17 meq/L
Urine pH	Greater than 5.3	Variable, greater than 5.3 if above bicarbonate reabsorptive threshold	Usually less than 5.3
Plasma potassium	Usually reduced but hyperkalemic forms exist; hypokalemia largely corrects with alkali therapy	Reduced, made worse by bicarbonaturia induced by alkali therapy	Increased

A case of renal related acidosis

- Amy is a 24 year-old mother of one who develops acute renal failure after a perforated ulcer gave her peritonitis and shock. Her labs are:

 Na¹ 140 mEq/L,

 K¹ 4 mEq/L,

 CO₂ 5 mEq/L,

 pH = 7.12,

 pH = 7.12,

 PAC② 13 mmHg,

 HCO₃ 4 mEq/L.

 AG = 21 = (140 (Cr + CO₂)

 Delta AG= 9 = (21-12)

 Delta HCO₃² = 23 = (27-4)

 Delta (HCO₃²) gap = -14 = delta AG delta HCO₃²

Her anion gap is up, but not off the chart.

The bicarbonate gap is off.

Renal Tubular Acidosis

- In other words, her HCO₃ is significantly reduced at -14 mEq/L.

 That is 14 mEq/L lower than would be expected given her excess anion gap of 8
- gap of 8
 Were this a simple 'one cause'
 acidosis, the acid causing her drop in
 pH should have lowered her CO₂ to
 only about 19 mEq/L.
 The fact that her CO₂ is actually 5
 mEq/L means there must an
 additional reason for her acidosis.
 In this case, if a hyperchloremic
- In this case, it's a hyperchloremic metabolic acidosis, which is commonly seen with renal failure.
- She has two renal related problems.

 - Uremia from kidney failure causing the elevated AG.
 Tubular related problem of HCO₃ recovery and acid secretion, which leads to a non-ion gap acidosis with hyperchloremia.

Mixed Derangements

- Mixed acid-base disorders
- Folks are entitle to more than one medical problem at a time.
- Even acidosis and alkalosis at the same time.
 - What would their pH be?
- What will help
 - Anion gap
 - Bicarbonate gap
 - Chloride concentration

