Neuro - Tissue Reactions

- Anoxia
 - Neurons most sensitive to anoxia reside in the hippocampus, Purkinje cells, and larger neocortical neurons
 - Affect watershed areas first
 - "red" shrunken neurons
- Decreased consciousness can result from diffuse axonal injury in absence of localizing findings with trauma
 - Due to stretching and tearing of axons
- Primary reaction to injury – edema
 - Return of function related to resolution of edema
- Liquefactive necrosis

Bacterial Meningitis

- Suppurative involvement of the meninges
 - Located in subarachnoid space; communicates with CSF
- Hematogenous dissemination
 - No complement in CSF
- CSF
 - Increased protein, decreased glucose
 - PMNs
 - Gram stain – bacteria
 - Positive culture
- Clinical features
 - Headache, fever
 - Nuchal rigidity, Kernig’s sign
 - Focal neurological deficits
 - Increased intracranial pressure

Other Infections

- Viral meningitis
 - “aseptic meningitis”
 - Slight increase protein, no decrease in glucose
 - Lymphocytes
 - Echovirus, mosquito-borne viruses (west nile virus, eastern equine virus)
- Brain Abscess
 - “ring” enhancement of abscess
 - central area of low density, & surrounding area of low density due to edema
 - Fibrosis around abscess
 - CSF – increased protein, few cells

Bacterial Meningitis

<table>
<thead>
<tr>
<th>Group</th>
<th>Gram pos cocci</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td>Group B strep E coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-18 years</td>
<td>Neisseria meningitidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 and >25 years</td>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV Drug user</td>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonate or immunosuppressed child</td>
<td>Listeria monocytogenes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syphilis

- Meningovasculitis
 - Infiltration of meninges and vessels by lymphocytes and plasma cells; may cause symptoms of meningitis or vascular occlusion.
- General Paresis
 - Atrophy, loss of cortical neurons especially in frontal lobes, gliosis, proliferation of microglial cells (rod cells), perivascular lymphocytes and plasma cells.
- Tabes Dorsalis
 - Inflammatory lesions involving dorsal nerve roots. Loss of axons and myelin in dorsal roots with Wallerian degeneration of dorsal columns. (T. pallidum is absent in cord parenchyma.)
Encephalitis

- **Viruses**
 - Headache, fever, seizure, altered consciousness
 - Increased intracranial pressures, no other CSF findings
 - Neonates and immunosuppressed – herpes, cytomegalovirus, HIV
 - Adults – vector-borne infections (West Nile, eastern equine, etc.); polio
 - Most hematogenous
 - Spread along nerves: rabies, herpes simplex

- **Pathology**
 - Perivascular cuffing by lymphocytes and plasma cells;
 - Neuronal necrosis;
 - Inclusion bodies;
 - Microglial proliferation and glial nodules;
 - Hemorrhagic necrosis
 - Rod cells: reactive microglial cells

Specific Pathologic Findings

- **Herpes**
 - Necrosis and hemorrhages in temporal lobe
- **Cytomegalovirus**
 - Owl’s eye nuclear inclusions; cytoplasmic inclusions
 - Periventricular necrosis, focal calcifications
- **Rabies**
 - Negri bodies in Purkinje cells of cerebellum

HIV

- **Immunosuppression**
 - Cryptococcus (India ink preparation) – mononuclear, normal protein, normal glucose
 - Herpes, cytomegalovirus, toxoplasmosis, PML
- **AIDS-Dementia Complex**
 - Cognitive, motor, and behavioral dysfunction. The symptoms are due to subcortical lesions, with microscopic changes mainly in basal ganglia, thalamus, and subcortical white matter
 - HIV antigen is found in microglia, macrophages and multinucleated giant cells (formed by fusion of macrophages)
 - Microscopic changes include: foci of necrosis, gliosis, and/or demyelination, microglial nodules, multinucleated cells

Progressive multifocal leukoencephalopathy

- More common in immunosuppressed
- Intellectual deterioration and dementia over months
- JC papovavirus
- Multiple (multifocal) areas of demyelination in the white matter
- Little, if any, inflammatory reaction
- Inclusion bodies found in oligodendrocyte nuclei, large astrocytes with bizarre nuclei

Subacute Sclerosing Panencephalitis

- Rare disease of children and adolescents
- Associated with a defective measles virus (myxovirus)
- Personality changes, intellectual decline progressing to dementia. The course is progressive deterioration, with a duration of 1 month to several years.
- Changes involve both white matter and gray matter with cortical atrophy and demyelination.
- Oligodendrocytes and neurons contain inclusion bodies

Spongiform Encephalopathy

- **Creutzfeldt-Jakob Disease**
 - 40 and 80 years of age
 - Sporadic; transmission has occurred by corneal transplant or administration of contaminated growth hormone
 - Dementia and myoclonus
 - Deterioration, with death occurring usually in 3-12 months
 - Routine CSF findings are usually normal
 - Spongiform encephalopathy in gray matter throughout brain and spinal cord
- **Kuru** - Cannibalism
- **"Mad Cow" Disease** – new variant CJD
Toxicities

- Alcholol
 - Associated with petechial hemorrhages and gliosis of the mamillary bodies, discoloration of structures (hemosiderosis) surrounding the third ventricle, aqueduct, and fourth ventricle
 - toxic vs. nutritional; DEFICIENCY OF THIAMINE
 - peripheral neuropathy
 - bilateral limb numbness, tingling, and paresthesia
 - alcoholic cerebellar degeneration; ataxia, wide-based gait; cerebellar vermic atrophy
 - cognitive problems and dementia
 - psychiatric: anxiety, hallucinations, paranoid delusions

Toxicities

- Systemic Diseases
 - Liver failure (alcoholic cirrhosis): hyperammonemia – asterixis
 - Uremia: symmetric, peripheral neuropathy
 - Diabetes
 - Bilateral symmetrical neuropathy
 - Autonomic instability
 - Neurogenic bladder
 - Nutritional
 - subacute combined degeneration – Vitamin B12
 - generalized weakness and paresthesias; loss of vibration and position sense; motor defects limited to legs; mental symptoms include irritability, apathy, somnolence, suspiciousness, confusional psychosis, and intellectual deterioration
 - folic acid deficiency: developmental abnormalities, especially closure of neural tube

Trauma – Intracranial Hemorrhages

- Epidural hematoma
 - Middle meningeal artery
 - “lucid” interval between an initial loss of consciousness and later accumulation of blood
 - Worse prognosis (comatose, herniation)
- Subdural hematoma
 - Delayed onset of symptoms – headache and confusion
 - Localized hematoma in association with skull fracture
 - Tearing of bridging veins beneath the dura
- Duret hemorrhages
 - Medial temporal lobe herniation

Berry Aneurysm

- Congenital weakness of intracerebral artery wall (1 in 100)
- Saccular aneurysm near Circle of Willis
- If ruptures, results in subarachnoid hemorrhage (headache, blood in CSF)
- Rupture when reach 4-7 mm
- Often asymptomatic until rupture
- Associated with other malformations, familial syndromes
 - Autosomal dominant polycystic disease
 - Ehler’s-Danlos syndrome
- Does not result in herniation
Other Hemorrhages

- germinal matrix hemorrhage
 - Premature infants
 - Hypoxemia, hypercarbia, acidosis, changes in blood pressure
 - Hemorrhage into germinal matrix
 - Extend into cerebral ventricles (intraventricular hemorrhage)
 - Organization of blood can lead to obstruction of aqueduct of Sylvius and hydrocephalus
- "coup" injury
 - Injury to stable head adjacent to site of blow
- contrecoup injury
 - Moving head strikes a stable object
 - Force is transmitted to opposite side of the head
 - Backward fall – contusions to inferior frontal lobes, temporal tips, and inferior temporal lobes

Alzheimer’s Disease

- Progressive dementia with memory loss
- Neurofibrillary tangles
 - Hippocampus, amygdala, neocortex
 - "congophilic angiopathy" – deposition of amyloid in arteriolar media
- Multiple associations
 - Formation and aggregation of the Aβ peptide derived from abnormal processing of amyloid precursor protein; cleavage by β-secretase
 - Inheritance of ApoE4 gene
 - Mutations in presenilin genes
- Cerebral atrophy (hydrocephalus ex vacuo)

Degenerative Diseases

- Parkinson’s
 - Clinical findings
 - Difficulty initiating movement
 - Muscular rigidity
 - Expressionless facies
 - "pill-rolling" tremor
 - Loss of pigmented neurons in substantia nigra
- Pick’s disease
 - Similar to Alzheimer’s, but more frontal features and less memory loss
 - "knife-like" gyral atrophy of frontal and temporal lobes; sparing of parietal and occipital lobes
 - Pick bodies – intracytoplasmic, faintly eosinophilic rounded inclusions
 - Stain for tau protein

Degenerative Diseases

- Huntington’s Chorea
 - Midlife
 - Autosomal dominant
 - Worsening choreiform movements
 - Behavioral change without memory loss
 - Expansion of CAG repeats on chromosome 4 (huntingtin gene)
 - Atrophy, neuronal loss with gliosis in caudate, putamen, and globus pallidus
- Dementia with Lewy bodies
 - Clinical features of Alzheimer’s and idiopathic Parkinson’s
 - Spheroidal, intraneuronal, cytoplasmic, eosinophilic inclusions – stain for α-synuclein

Inherited Degenerative – Children

- Tay-Sachs
 - Disease of infancy and childhood
 - Deficiency of hexosaminidase A
- Metachromatic leukodystrophy
 - Affect white matter extensively
 - Cause myelin loss and abnormal accumulation of myelin
 - Lysosomal enzyme defects

Multiple Sclerosis

- Lesions separated in time and space
- Central demyelination (oligodendrocytes)
- Progressive with relapses and remissions
- Optic nerve most common presentation
- Oligoclonal immunoglobulins in CSF
- Both motor and sensory
Ischemic Stroke
- Involves thrombotic obstruction of arterial flow
 - Most common: thrombosis of atherosclerotic plaque and downstream ischemia
 - Less common: embolic disease
- Most common: middle cerebral artery
- Primary pathophysiology: advanced atherosclerosis, atherosclerosis of carotids, hypercholesterolemia
 - May be preceded by transient ischemic attacks

Hemorrhagic stroke
- Hemorrhage in area of internal capsule, putamen,
- Primary pathophysiology: hypertension
- Progression depends on rate and size of bleed
- May result in increased intracranial pressures and herniation
- Contralateral weakness, sensory loss
- Both limbs, distal>proximal
- No aphasia (except motor dysarthria)

Lacunar infarcts
- Hypertension of straight penetrating end arteries of middle cerebral artery
- Hypertension leads to arteriolosclerosis and narrowing of lumen
- Chronic ischemia leads to development of cysts (remember necrosis of brain results in liquefactive necrosis) – lacunae
- Area of internal capsule
- May precede hemorrhagic stroke
- Usually incidental finding

Arteriovenous malformation
- Young to middle aged adults (Senator Tim Johnson)
- Mimic tumor, stroke
- Mass lesion consisting of tortuous vessels
- Frontal lobe – behavior changes, seizures
- May bleed slowly or suddenly
- Gliosis (reaction to slow blood leakage)

Neoplasms
- Neoplasias of glial cells and epithelial linings, not axons or nerves
- Differential
 - Adult vs. children
 - Rate of development (years to weeks)
 - Location (cerebral vs. extracerebral vs. spinal cord)
 - Morphology on CT (diffuse vs. well demarcated)
Tumor vs. Other

- **Length of development** – subacute
- **Localizing signs and symptoms**
 - Unilateral
 - Specific location – visual, symptoms
 - Seizure activity
- **Primary (solitary) vs. Metastases (multiple)**
 - Intracerebral
 - Tumor emboli settle in vessels in gray-white junction
 - Don’t metastasize outside of cranium; within cranium, spread through arachnoid space

Adults

- **Meningioma**
 - Most common benign brain tumors
 - 30% of adult brain and CNS tumors
 - Dural (extracerebral) location, growth over months, well-circumscribed, often asymptomatic until large
 - Tumor of arachnoid - elongated cells with pale, oblong nuclei, pink cytoplasm, psammoma bodies

- **Glioblastoma multiforme**
 - 25% of adult tumors (half of glial tumors)
 - Most common intracranial malignant tumor
 - Middle age
 - Rapidly progressive intracerebral growth (weeks to months)
 - Invasive, not circumscribed
 - Necrosis, nuclear pseudopalisading, hyperchromatic cells
 - Perinecrotic palisading
 - Glomeruloid vascular proliferation

- **Astrocytomas**
 - 25% of adult tumors (half of glial tumors)
 - Most common intracranial malignant tumor
 - Middle age
 - Rapidly progressive intracerebral growth (weeks to months)
 - Invasive, not circumscribed
 - Necrosis, nuclear pseudopalisading, hyperchromatic cells
 - Perinecrotic palisading
 - Glomeruloid vascular proliferation

- **Oligodendromas**
 - Intracerebral glial tumors
 - Solitary, well-circumscribed masses
 - Homogeneous cells with dark nuclei, stain with GFAP

- **Oligodendromas vs. astrocytomas**
 - Astrocytomas less well circumscribed
 - Astrocytomas more common

- **Cerebral lymphoma**
 - HIV patients
 - B-cell large cell lymphoma (CD19, CD20)

- **Ependymomas**
 - Arise in ventricles or spinal canal
 - Rare in adults
 - Myxopapillary variant – more common in adults than children
 - Cuboidal cells around papillary cores in a myxoid background
 - Arise in ventricles

- **Schwannomas**
 - Cerebellopontine angle, eighth nerve

Other Adult

- **Cerebral lymphoma**
 - HIV patients
 - B-cell large cell lymphoma (CD19, CD20)

- **Ependymomas**
 - Arise in ventricles or spinal canal
 - Rare in adults
 - Myxopapillary variant – more common in adults than children
 - Cuboidal cells around papillary cores in a myxoid background
 - Arise in ventricles

- **Schwannomas**
 - Cerebellopontine angle, eighth nerve

Children

- **Most commonly occur in posterior fossa**
 - Involve cerebellum – ataxia, gait disturbances
 - Block CSF flow, cause hydrocephalus

- **Astrocytoma – best prognosis**
 - Pilocytic astrocytoma – cystic cerebellar astrocytoma
 - Older children
 - Stain with GFAP, long cellular processes

- **Astrocytoma**
 - Pilocytic astrocytoma – cystic cerebellar astrocytoma
 - Older children
 - Stain with GFAP, long cellular processes

- **Ependymomas**
 - Arise in ventricles or spinal canal
 - Rare in adults
 - Myxopapillary variant – more common in adults than children
 - Cuboidal cells around papillary cores in a myxoid background
 - Arise in ventricles

- **Schwannomas**
 - Cerebellopontine angle, eighth nerve

Other Adult

- **Cerebral lymphoma**
 - HIV patients
 - B-cell large cell lymphoma (CD19, CD20)

- **Ependymomas**
 - Arise in ventricles or spinal canal
 - Rare in adults
 - Myxopapillary variant – more common in adults than children
 - Cuboidal cells around papillary cores in a myxoid background
 - Arise in ventricles

- **Schwannomas**
 - Cerebellopontine angle, eighth nerve

Children

- **Most commonly occur in posterior fossa**
 - Involve cerebellum – ataxia, gait disturbances
 - Block CSF flow, cause hydrocephalus

- **Astrocytoma – best prognosis**
 - Pilocytic astrocytoma – cystic cerebellar astrocytoma
 - Older children
 - Stain with GFAP, long cellular processes

- **Astrocytoma**
 - Pilocytic astrocytoma – cystic cerebellar astrocytoma
 - Older children
 - Stain with GFAP, long cellular processes

- **Ependymomas**
 - Arise in ventricles or spinal canal
 - Rare in adults
 - Myxopapillary variant – more common in adults than children
 - Cuboidal cells around papillary cores in a myxoid background
 - Arise in ventricles

- **Schwannomas**
 - Cerebellopontine angle, eighth nerve
Children

- Medulloblastoma
 - Peak age 5 years
 - Midline, small blue round cells
 - Homer Wright pseudo-rosettes
 - Poor prognosis
- Ependymoma
 - Older children and adolescents
 - Floor of fourth ventricle
 - Tumor rosettes
 - Poor prognosis

Spinal Cord Tumors

- Intramedullary (10%)
 - Ependymomas
 - Astrocytomas
 - Glioblastomas
- Extramedullary (90%)
 - Schwannomas
 - Neurofibromas
 - Meningiomas

Neurofibromatosis

- Familial syndromes – neurocutaneous syndromes
 - Type I (peripheral)
 - Autosomal dominant
 - Café au lait spots
 - Schwannomas (cranial nerves, peripheral nerves, neurofibromas (intracranial)); may be multiple
 - Plexiform neurofibromas
 - Type II (Central)
 - Autosomal dominant (chromosome 22)
 - Bilateral schwannomas of the eighth nerves or multiple meningiomas

Tuberous Sclerosis

- “phakomatoses” – hamartomas and neoplasms develop throughout the body
- Cutaneous abnormalities
- Cortical tubers – hamartomas of neuronal and glial tissues
- Other features
 - Renal angiomyolipomas, renal cysts
 - Subungual fibromas
 - Cardiac rhabdomyomas

Increased intracranial pressure

- Symptoms
 - Papilledema
 - Cranial nerve dysfunction (bilateral)
 - Increased opening pressure on spinal tap (check for papilledema first!)
 - Progressive evolution of loss of consciousness, herniation
- Hydrocephalus
 - Communicating
 - Non-communicating
 - Hydrocephalus ex-vacuo

Forms of Herniation

- Cingulate gyrus herniation
- Midline shift
- Uncal herniation
- Cerebellar tonsil herniation
- Downward displacement (central herniation)
Developmental Defects

- **Anencephaly**
 - absence of the brain or of all parts except the basal ganglia, brainstem and cerebellum.
 - failure of closure of the anterior neuropore
 - Elevated maternal serum α-fetoprotein

- **Holoprosencephaly**
 - cerebral hemispheres fail to divide properly.
 - associated with trisomy 13-15 and other chromosomal defects
 - total or partial lack of division of telencephalic vesicles, optic vesicles, and/or olfactory vesicles

- **Meningomyelocele**
 - meninges and spinal cord protrude through overlying defect in the vertebral column
 - lumbosacral location.
 - also have hydrocephalus and Arnold-Chiari malformation

- **Encephalocele**
 - meninges and brain tissue protrude through a skull defect.

Spinal Column

- **Spina bifida** - general term for a midline skeletal defect in the spine of any type.
 - Spina bifida occulta - closure defect of posterior vertebral arch; may be associated with overlying dimple, hair
 - Congenital dermal sinus - least serious and most common mid-line defect. Defects range from dimpling of skin over lumbosacral area to sinus tracts in this region.
 - Meningocele - sac containing meninges & CSF protrudes through skeletal defect (rare)

- **Syringomyelia** – cervical vertebrae

Dandy-Walker

- malformation of vermis (anterior vermis displaced rostrally, inferior vermis reduced to abnormal white matter on medial surfaces of hemispheres)

- cystic dilatation of fourth ventricle, with wall of cyst composed of ependyma and leptomeninges
 - lateral displacement of cerebellar hemispheres by 4th ventricle

- increased volume of posterior fossa, with upward displacement of lateral venous sinuses.

- obstruction of foramina of Luschka and Magendie, with production of hydrocephalus

Arnold-Chiari

- **Type I (adult type)** has variable herniation of cerebellar tonsils and is frequently accompanied by syringomelia

- **Type II (infantile type)**, called the Arnold-Chiari malformation here,
 - polymicrogyria
 - meningomyelocele
 - hydrocephalus

- beak-shaped colliculi, displacement of the medulla and fourth ventricle down into the cervical segments

Other

- **Central pontine myelinolysis**
 - Too rapid correction or normalization of hyponatremia
 - Osmotic demyelination
 - Results from chronic adaptation to hyponatremia with formation of intracellular osmoles

- Most often a result of alcoholism
 - Can also occur with rapid normalization of sodium from SIADH

- Prognosis is poor
Response to Injury - Axons

- **segmental demyelination**
 - dysfunction of Schwann cell or damage to myelin sheath (no 1st abnormality of axon)
 - disintegrating myelin engulfed by Schwann cells, later macrophages
 - denuded axon undergoes remyelination
 - newly formed internodes are shorter than normal
 - several new internodes are required to bridge gap
 - new myelin thinner than original
 - sequential episodes of demyelination and remyelination leads to concentric skeins and formation of "onion bulbs"

- **newly formed internodes are shorter than normal**
 - several new internodes are required to bridge gap
 - new myelin thinner than original
 - sequential episodes of demyelination and remyelination leads to concentric skeins and formation of "onion bulbs"

Response to Injury - Axons

- **axonal degeneration**
 - implies primary destruction of axon with secondary disintegration of myelin sheath
 - may be due to trauma, ischemia, underlying abnormality of neuron or axon
 - response to transection: *Wallerian degeneration*
 - axon breaks down within one day
 - Schwann cells catabolize myelin and engulf axon fragments
 - macrophage phagocytosis of axonal and myelin debris
 - stump (proximal portion) shows degenerative changes in most distal 2 or three internodes
 - if neuron remains viable, undergoes regenerative activity

Response to Injury - Axons

- **symptoms associated with neuronal degeneration**
 - lower motor neurons - muscular atrophy, fasciculations, weakness
 - upper motor neurons - hyperreflexia, spasticity, and a Babinski reflex
- **nerve regeneration**
 - involves growth cone at end of remaining stump
 - multiple, closely aggregated thinly myelinated small-caliber axons (regenerating cluster)
 - haphazard growth and mass of tangled fibers - pseudoneuroma
 - slow rate of axonal transport - growth only 2 mm/day
 - denervated muscle usually re-innervated by adjacent fibers before original fiber regenerates

Amyotrophic Lateral Sclerosis (Lou Gehrig's Disease)

- **Clinical Characteristics**
 - Middle-aged
 - 10% familial; genetic locus Cu/Zn binding superoxide dismutase gene
 - Loss of upper and lower motor neurons
 - Progressive, symmetric muscular weakness
 - May present with bulbar symptoms, with sparing of the extra-ocular muscles
 - Intact mental function; death from respiratory complications
 - Pathology
 - Gliosis and loss of motor neurons
 - Pallor of lateral corticospinal tracts
 - Neuronal loss in anterior horns of spinal cord
 - Denervation atrophy of muscle fibers

Werdnig-Hoffman disease (infantile progressive spinal muscular atrophy)

- "floppy infant syndrome": severe form of lower motor neuron disease which presents in neonatal period
- Death within a few months from respiratory failure or aspiration pneumonia
- Autosomal recessive condition, pathogenesis unknown
- Morphology
 - severe loss of lower motor neurons with profound neurogenic atrophy of muscle
 - degeneration of motor axons of the anterior roots

Guillain-Barre Syndrome

- **Clinical Characteristics**
 - Life-threatening diseases of peripheral nervous system
 - Death (2-5%) from respiratory paralysis; recovery over several weeks if respiratory function maintained
 - Acute illness, symmetric, *ascending paralysis* (distal to proximal)
 - Motor>sensory with loss of deep tendon reflexes
 - Elevation of CSF protein (no white cells)
 - Pathology
 - 2/3 cases preceded by influenza-like illness
 - Most intense inflammation in spinal and cranial motor roots (anterior roots)
 - Autoimmune *segmental demyelination*: nerve conduction slowed
 - Thought to be T-cell mediated, but treatable with plasmapheresis
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)

- Clinical Characteristics
 - radiculopathy
 - chronic relapsing, remitting course
 - symmetric, mixed sensorimotor polyneuropathy

- Morphology - Similar to GB, because of chronic nature, well-developed onion-bulb structures are seen

- Biopsy of sural nerves shows recurrent demyelination and remyelination with onion bulb structures

- Clinical remissions with steroid treatment and plasmapheresis

Infectious Neuropathies

- Varicella-Zoster (post Chicken Pox)/Shingles
 - latent infection of the sensory ganglia of the spinal cord and brain stem
 - virus transported along sensory nerves to infect epidermal cells; reactivation vesicles appear distributed along dermatome (very painful!!!)
 - reactivation may be related to decreased cell mediated immunity
 - affected ganglia show neuronal destruction with abundant mononuclear infiltrates; regional necrosis with hemorrhage

Hereditary Neuropathies

- HMSN I (Charcot-Marie-Tooth disease)
 - autosomal dominant/most common
 - presents in childhood or early adulthood; normal life span; limited disability
 - progressive, symmetric muscular atrophy, particularly in the calf muscles (peroneal muscular atrophy)
 - suggests Schwann cell abnormality
 - palpable nerve enlargement/hypertrophy - demyelination and remyelination of peroneal nerve

- HMSN II - similar to HMSN I, presents at later age and nerve enlargement is not seen; autosomal dominant

- HMSN III (Dejerine-Sottas disease)
 - AR; present in infancy; delay in acquisition of motor skills
 - slow progression of distal weakness plus truncal weakness
 - enlarged, palpable peripheral nerves, onion bulb formation

Acquired Metabolic and Toxic Neuropathies

- Hand/foot (distal) symmetric distribution
- Numbness tingling (primarily sensory)

- diabetes mellitus, alcoholism, uremic neuropathy

- industrial or environmental chemicals - axonal degeneration
 - acrylamide, heavy metals (arsenic, lead), vinca alkyloids (plants, drugs), organophosphates (pesticides)

- tumor-associated syndromes

Tumor-associated syndromes

- direct infiltration or compression of peripheral nerves (Pancoast’s; cauda equina involvement)

- Plasma cell dyscrasias (Two types)
 - Amyloid (light chain deposition) vs. monoclonal IgM gammopathy
 - compression syndromes - similar to carpal tunnel syndrome

- Paraneoplastic syndromes - solid tumors
 - most often associated with small cell carcinoma of the lung
 - degeneration of dorsal root ganglion cells with proliferative responses by satellite cells and inflammatory infiltrates
 - plasma cells and lymphocytes, predominantly CD8
 - sensorimotor lesion - weakness and sensory deficits more pronounced in the lower extremities that progress over months to years
 - Eaton-Lambert syndrome

Schwannomas

- Benign
 - neural crest derived Schwann cells
 - within cranial vault, most common location is the cerebellopontine angle, attached to eighth nerve
 - extradural tumors most commonly found in association with large nerve trunks

- Malignant schwannoma (malignant peripheral nerve sheath tumor, MPNST)
 - highly malignant, locally invasive
 - multiple recurrences with eventual metastatic spread
 - never arise from malignant degeneration of benign schwannoma; arise from plexiform neurofibromas (NF-1)
Neurofibroma
- **Cutaneous/peripheral nerve form**
 - markers of diverse lineages, including Schwann cells, perineurial cells, and fibroblasts
 - Unencapsulated, highly collagenized masses of spindle cells
- **Plexiform neurofibroma**
 - defining lesion of neurofibromatosis type 1
 - difficult to remove surgically
 - high potential for malignant transformation; frequently multiple

Myasthenia gravis
- **Clinical features**
 - if before age 40, F>M
 - motor weakness which fluctuates – increases with muscle use
 - exacerbations by intercurrent illness
 - sensory and autonomic functions not affected
 - characteristic temporal and anatomical distribution
 - extracranial muscles commonly involved (ptosis and diplopia)
- **Diagnostic features**
 - decrement in motor responses with repeated stimulation
 - Tensilon test: transient improvement when administered anticholinesterase agents

Myasthenia gravis
- decrease in number of muscle acetylcholine receptors secondary to anti-receptor antibodies
 - can be passively transferred to animals
 - circulating anti-AChR causes decrease in receptor number (increased receptor internalization and destruction) and damage to post-synaptic membrane secondary to complement fixation
- **often associated with thymic hyperplasia or thymomas**: patients respond to thymectomy
- **Morphology**
 - muscle biopsies unrevealing; may have diffuse changes with Type 2 atrophy
 - immune complexes present in synaptic cleft
 - thymic hyperplasia with germinal centers

Eaton-Lambert syndrome
- paraneoplastic syndrome (most commonly small cell carcinoma of the lung)
- proximal muscle weakness with autonomic dysfunction
- does not respond to Tensilon test or show increased weakness with repetitive stimulation
- ACh receptors OK, but fewer vesicles are released on synaptic transmission
- passive transfer of syndrome with IgG

Botulism (Clostridium botulinum)
- secondary to toxin production in improperly prepared foods or an anaerobic infection
 - No infection with organism; absobption of ingested toxin
 - Neonates: necrotizing intestinal infection by *C. botulinum* from honey
- paralysis due to disruption of presynaptic neurotransmitter release

Types of muscle fibers

<table>
<thead>
<tr>
<th></th>
<th>Terms</th>
<th>Characteristics</th>
<th>Function</th>
<th>pH 4.2</th>
<th>pH 9.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Slow type, red type</td>
<td>have many mitochondria, myoglobin, and oxidative enzymes</td>
<td>wt. bearing and sustained force</td>
<td>dark</td>
<td>light</td>
</tr>
<tr>
<td>Type II</td>
<td>Fast type, white type</td>
<td>rich in glycolytic enzymes</td>
<td>rapid, purposeful movement</td>
<td>light</td>
<td>dark</td>
</tr>
</tbody>
</table>

- Determinant of muscle fiber type - determined by the motor neuron that innervates it (i.e., if the neuron type changes, the muscle type will change along with it); staining for ATPase
Response to Injury - Muscle

- **Denervation atrophy** - secondary to axonal loss
 - **group atrophy** - type group becomes denervated
 - down regulation of myosin and actin synthesis
 - decreased cell size with resorption of myofibrils
 - **cytoskeletal reorganization** - rounded zone of disorganized fibers (target fiber)
 - type 2 fiber atrophy - inactivity or disuse; also pyramidal tract disorders, neurodegenerative diseases

- **Reinnervation**
 - muscle fibers re-innervated by sprouts from adjacent nerves incorporated into muscle fiber group for that nerve
 - orphaned fibers assumes fiber type of neighbors; leads to type grouping

Duchenne’s muscular dystrophy

- **Epidemiology**
 - X-LINKED (1/3500 males)
 - female carriers show increased plasma levels of creatine kinase and mild muscle damage
 - mutations in gene for dystrophin; 1/3 new mutations

- **Clinical Characteristics**
 - most severe of the dystrophies
 - early motor milestones met on time; develop inability to keep up with peers
 - clinically manifest by age of five; wheelchair by 10 or 12
 - weakness begins in pelvic girdle muscles and extends to shoulder; use of arms to get up called “Gower’s maneuver”
 - cognitive impairment to mental retardation

- **Morphology**
 - degeneration, necrosis, and phagocytosis of muscle fibers
 - variation in muscle fiber size with both small and giant fibers; fiber splitting
 - increased numbers of internalized nuclei (muscle regeneration)
 - replacement of muscle fibers by fatty infiltrate

- **Clinical Findings**
 - serum creatine kinase elevated in first decade; may return to normal as muscle is destroyed
 - enlargement of calf muscles: pseudohypertrophy
 - progressive; death by early 20’s from respiratory insufficiency, lung infection, or cardiac decompensation
 - changes in heart result in heart failure or arrhythmias

Becker’s Muscular Dystrophy

- **X-LINKED RECESSIVE**
 - similar to Duchenne’s, but less common and less severe
 - onset later in childhood and into adolescence
 - slower, variable rate of progression
 - involves changes to, not loss of dystrophin gene locus
 - normal life span with rare cardiac involvement

Other

- **Facioscapulohumeral muscular dystrophy**
 - AUTOSOMAL DOMINANT
 - disease of adolescents-young adults
 - weakness of muscles of face, neck, and shoulder girdle
 - dystrophic myopathy with inflammatory infiltrate

- **Limb-girdle dystrophy**
 - AUTOSOMAL RECESSIVE/SPORADIC CASES
 - onset as adolescent or young adults
 - weakness of proximal muscles of upper and lower extremities
 - progression variable; variable dystrophic myopathy
Myotonic dystrophy

- Myotonia = sustained involuntary contractions
 - patients c/o stiffness, unable to release grip
 - percussion of thenar eminence elicits myotonia
- Epidemiology/inheritance
 - AUTOSOMAL DOMINANT
 - increasingly severe and at younger age in succeeding generations: ANTICIPATION
- Etiology/Pathogenesis
 - gene for myotonin-protein kinase, unstable mutation
 - damage collects with each generation

Myotonic dystrophy

- Clinical Characteristics
 - late childhood with gait difficulties, foot weakness
 - progresses to involve hand and wrist extensors
 - atrophy of muscles of face (ptosis)
 - cataracts present in nearly every patient
 - also: frontal balding, gonadal atrophy, cardiomyopathy, smooth muscle involvement, decreased plasma IgG, and abnormal glucose tolerance test
- Morphology
 - muscle dystrophy similar to DMD
 - increase in the number of internal nuclei in chains
 - ring fibers
 - relative atrophy of Type I fibers
 - dystrophic changes in muscle spindle fibers (unique)

Congenital Myopathies

- onset in early life, nonprogressive or slowly progressive course, proximal or generalized muscle weakness, hypotonia; "floppy babies" or may have severe joint contractures
- Syndromes
 - Nemaline myopathy
 - Lipid myopathies
 - Mitochondrial myopathies
 - Cradle’s syndrome
 - Pompe’s disease
- Also: ion channel myopathies (periodic paralysis and myotonia associated with hyper-, hypo-, or normokalemia
 - malignant hyperthermia – dramatic hypermetabolic state associated with induction of anesthesia; familial susceptibility

Toxic Myopathies

- thyrotoxic myopathy - proximal muscle weakness, fiber necrosis with regeneration, interstitial lymphocytes; focal myofibril degeneration with fatty infiltrate
- hypothyroidism - cramping and aching of muscles with slowed reflexes and movements; fiber atrophy, internal nuclei, glycogen aggregation, accumulation of mucopolysaccharides (myxedema)
- thyrotoxic periodic paralysis - episodic weakness often accompanied by hypokalemia; M>F, Japanese descent; dilatation of sarcoplasmic reticulum and intermyofibril vacuoles
- alcohol-induced - drinking with RHABDOMYOLYSIS/ myoglobinuria; pain generalized or confined to single muscle group; swelling of myocytes with fiber necrosis, myophagocytosis, and regeneration

Loss of Pigment

- Vitiligo
 - Irregular, well-demarcated macules devoid of pigment
 - Loss of melanocytes
 - autoimmunity
 - neurohumoral factors
 - toxic melanin synthesis metabolites
- Albinism
 - Congenital absence of pigmentation
 - Multiple abnormalities

Increased Pigmentation

- Freckles (ephilis)
 - Tan-red to brown macules
 - ↑ with sun exposure
- Melasma
 - Darkening of skin
 - Under hormonal control (menopause, pregnancy)
- Lentigo
 - Macular (flat), delimited pigmented area
Nevi

- **Progression**
 - begins as small tan dot; grows as uniformly colored tan-brown area with well-defined, rounded borders
 - after 1-2 decades gradually flattens and returns to normal

- **Maturation of Nevi**
 - migration of cells into dermis accompanied by process termed “maturation”
 - less mature, more superficial cells are larger, produce more melanin pigment, grow in nests
 - more mature, deeper nevi cells are smaller, produce little or no pigment, grow in cords
 - the lack of maturation in melanomas is a key feature distinguishing melanomas from nevi

Dysplastic Nevi (BK moles)

- **Pathogenesis**
 - autosomal dominant, familial syndromes associated with hundreds of lesions on body surfaces (both sun exposed and non-exposed areas)
 - may be associated with chromosomal instability
 - most are clinically stable, but may undergo stepwise progression to malignant melanoma

- **Pathology**
 - larger than usual nevi; flat macules with variegation of pigmentation
 - characterized by abnormal pattern of growth and aberrant differentiation; cytologic atypia
 - focal areas of eccentric melanocytic growth
 - associated with subjacent lymphocytic infiltrate

Seborrheic keratosis

- **Clinical features**
 - middle aged or older individuals; commonly affect trunk
 - multiple small lesions on face of blacks: dermatosis papulosa nigra
 - sign of Leser-Trelat: paraneoplastic syndrome

- **Pathologic features**
 - well-demarcated, flat, coin like plaques mm-cm
 - uniformly tan to dark brown
 - velvety to granular surface
 - trabecular arrangement of sheets of basilar cells with keratin pearls
 - pores impacted with keratin with keratin-filled cysts
 - variable melanin pigmentation in basilar cells***

Melanoma

- **Color or size change of pre-existing mole or new lesions**
- Asymmetrical, irregular borders, variegated colors
- Large, irregular nuclei w/clumped chromatin and red nucleoli
- Radial growth first, then vertical growth
 - Degree of vertical growth is predictive of prognosis
- Lymphocytic infiltrate
 - Immune reaction important in controlling progression of tumor
- Assoc. w/p16INK4a

Acanthosis Nigricans

- **Clinical features**
 - cutaneous marker for associated benign and malignant conditions
 - benign: 80% heritable trait/obesity/endocrine disease/rare congenital syndromes
 - malignant type: underlying adenocarcinoma
 - hyperpigmented zones of skin involving flexoral areas – axilla, skin folds of neck, groin, and anogenital areas

- **Pathogenesis**
 - may be associate with abnormal production of epidermal growth factors
Keratoacanthoma
• Clinical features
 – rapidly developing benign neoplasm; 1–several cm.
 – resembles squamous cell carcinoma but may heal spontaneously
 – flesh-colored, dome-shaped nodules with central, keratin-filled plug
• Pathologic features
 – keratin-filled crater surrounded by lip of proliferating epithelial cells
 – atypical, eosinophilic, "glassy" cytoplasm; stromal response with inflammatory cells
 – host response may determine regression or progression

Adnexal Tumors
<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Cell Type</th>
<th>Location</th>
<th>Histological Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindroma</td>
<td>Apocrine gland</td>
<td>Forehead, scalp</td>
<td>Islands of basoid cells that fit together like jigsaw puzzle; fibrous, dermal matrix</td>
</tr>
<tr>
<td>Hyaladroneoma papilliferum</td>
<td>Apocrine gland</td>
<td>Ducts lined by apocrine type cells</td>
<td></td>
</tr>
<tr>
<td>Syringoma</td>
<td>Eccrine gland</td>
<td>Multiple, small, tan papules on lower eyelids</td>
<td>Eccrine ducts lined by membranous eosinophilic cubules</td>
</tr>
<tr>
<td>Trichoepithelioma</td>
<td>Hair follicle</td>
<td>Multiple, semitransparent, dome-shaped papules on face, scalp, and upper trunk</td>
<td>Pale, pink glassy cells; resembles uppermost portion of hair follicle</td>
</tr>
<tr>
<td>Sebaceous adenoma</td>
<td>Sebaceous gland</td>
<td>Cytoplasmic lipid vacuoles</td>
<td></td>
</tr>
</tbody>
</table>

Skin Cancer
• Squamous cell carcinoma
 – Sharply defined, red scaly lesions
 – Sheets w/keratin pearls and intracellular bridging
 – Can involve oral mucosa
 – Assoc w/p53, immunosuppression, HPV, UVB, dysfxn of Langerhans cells
• Basal cell carcinoma
 – Pearly papules, telangiectasia
 – Local destruction and invasion of bone and sinuses
 – Palisading cells in tumor nests and tongues
 – Lymphocytic infiltrate
 – Familial: two hit hypothesis
 – Sporadic: PTCH, p53

Acute Dermatoses
<table>
<thead>
<tr>
<th>Type I Hypersensitivity</th>
<th>Type IV Hypersensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urticaria and angioedema</td>
<td>Injected or systemically distributed antigen</td>
</tr>
<tr>
<td>Eczema</td>
<td>Contact or systemically distributed antigen</td>
</tr>
<tr>
<td>Erythema multifforme</td>
<td>Systemically distributed antigen</td>
</tr>
</tbody>
</table>

Urticaria and Angiodema
• **hives**: raised, pale, well-delimited pruritic areas; appear/disappear within hours
 – represent edema of the superficial portions of the dermis
• **angioedema**: egglike swelling with prominent involvement of deeper dermis and subcutaneous fat
• Worse in areas of rubbing and warmth, skin folds due to increased vascular flow (waistband, neckline, under breasts, etc.)
• Vascular reaction mediated by vasoactive substances
 – degranulation of mast cells: IgE-mediated allergic responses or complement-mediated responses
 – direct release of histamine by physical stimuli (cold)
 – non-specific release of mediators by mast cells by drugs or neurological response

Acute Eczematous Dermatitis
• Type IV cell-mediated hypersensitivity; prototype: poison ivy
• immunologically specific, mononuclear, inflammatory response that reaches its peak 24 to 48 hour after antigenic challenge
• intensely pruritic, fiery red, with numerous vesicles
 – “eczema” means to boil-over – redness, oozing plaques, vesicle formation
• requires previous sensitization: develops 7-10 days after 1st challenge; 2-3 days on subsequent challenge
• evolution of lesions from acute inflammation to chronic hyperplastic lesions
 – initial edematous inflammation
 – epidermal spongiosis and microvesicular formation
 – chronic: hyperplasia and hyperkeratosis (acanthosis)
 – prone to bacterial superinfection
Erythema multiforme
- Self-limited hypersensitivity to certain infections and drugs
- Multiform lesions: macules, papules, vesicles, or bullae
- Associated infections, drug hypersensitivities, tumors, collagen vascular diseases.
 - Penicillin, sulfonamides, barbiturates, salicylates, hydantoins, antimalarials
 - Lupus, dermatomyositis, periarteritis nodosa
- Bilateral involvement of extremities (especially shins)
- Lymphocyte-mediated epidermal necrosis
 - Accumulation of lymphocytes at dermal-epidermal border with dermal edema
 - Epidermal necrosis, blister formation; sloughing with shallow erosions
- Variants
 - Febrile disease in children: Stevens-Johnson Syndrome
 - Toxic epidermal necrolysis

Pemphigus vulgaris
- Separation of stratum spinosum from basal layer
- Vesicle contains lymphocytes, macrophages, eosinophils, neutrophils and rounded keratinocytes (“acantholytic cells”)
- IgG autoantibodies to intercellular substance of the epidermis (desmoglein)
- May be associated with other autoimmune diseases such as myasthenia gravis, SLE

Bullous pemphigoid
- Subepidermal, large tense blisters with erythematous base
- Subepidermal, non-acantholytic blisters
- Roof of vesicle is lamina densa
- Eosinophils predominate cell along with fibrin, lymphocytes, neutrophils
- Mast cell migration from venule toward epidermis
- Autoimmune disease characterized by circulating IgG antibodies to glycoprotein of lamina lucida
- Linear deposition of complement, recruitment of neutrophils, and release of major basic protein

Epidermolysis bullosa
- Hereditary
- Formation of blisters at sites of minor trauma
- Subepidermal vesicle with few inflammatory cells in dermis
- Classification
 - Epidermolytic epidermolysis bullosa:
 - Within basal keratinocytic layer, with intact epidermis
 - Junctional epidermolysis bullosa:
 - Within lamina lucida
 - Dermolytic epidermolysis bullosa:
 - Roof of vesicle is lamina densa
- Involve extensive flaws in the dermal component of the basement membrane zone and structural proteins of anchoring filaments, lamina densa

Psoriasis
- Common, familial (1-2% of population in US)
- Large, erythematous, scaly plaques with silvery scales
 - Commonly observed on extensor-dorsal surfaces, nail changes occur in 30%
- Severe disease may be associated with arthritis, myopathy, enteropathy, etc.
- Pathogenesis (T-cell mediated):
 - Deregulation of epidermal proliferation & an abnormality in the dermal microcirculation
 - Increased TNF associated with lesions; TNF-antagonists provide significant improvements

Psoriasis
- Pathology (Entire skin is abnormal)
 - Thickened epidermis (hyperkeratosis and parakeratosis) w/ a thinned/absent stratum corneum. Dilated and Tortuous Capillaries
 - Elongated papillae with Munro’s abscesses
 - Collections of neutrophils at top of elongated papillae
 - Collections of acute inflammatory cells in epidermal spinous layer & mononuclear inflammatory cells in dermis
 - Auspitz’ sign – multiple, minute bleeding points when a scale is removed
Lichen Planus
- **Multiple, symmetrically distributed “pruritic, purple, polygonal papules”**
 - usually appear on the flexor surface of the wrists
 - Resolve in 1-2 years
- **Pathologic features**
 - prominent band like lymphocytic infiltrate along dermoepidermal junction which replaces papillary/rete ridge
 - degeneration of basal keratinocytes; Saw-toothing of dermal interface
 - fibrillary, eosinophilic bodies represent dead keratinocytes: colloid, Civatte, or Sabouraud bodies
 - hypergranulosis and hyperkeratosis
- Wickham striae = white dots or lines
- Pathogenesis = likely T-cell mediated immune reaction to antigens in basal layer

Dermatitis herpetiformis
- **urticaria-like plaques with eroded erythematous blisters**
 - Occur on the elbows, knees, buttocks: Intensely Pruritic
 - adult males (3rd-4th decade)
 - related to HLA-B8/DRW3 haplotype and gluten sensitivity
- **Pathologic features**
 - deposits of **granular IgA to gliadin** at dermal-epidermal interface, mainly at the tips of the dermal papillae
 - receptor for gluten found in dermal papillae
 - collection of neutrophils at tips of papillae (microabscesses)

Osteogenesis Imperfecta
- “Brittle bone disease”
- Autosomal dominant
- Deficiencies in type I collagen
- Affects bones, joints, eyes, ears, skin, and teeth
- Extreme skeletal fragility, confused with child abuse
- Major subtypes
 - type I is most common; autosomal dominant; increased fractures, blue sclerae, hearing loss
 - basic abnormality is "too little bone"; marked cortical thinning and attenuation of trabeculae

Ostopenrosis
- “Stone bones” or “Marble bone” disease – too much bone formation (too little resorption)
 - bones lack medullary canal, decreased bone marrow
- Pathologic fractures, anemia, hydrocephaly, cranial nerve dysfunction
 - neural foramina small; cranial nerves compressed
 - abnormally brittle bones; short stature
- deficient osteoclast activity
 - diffuse symmetric skeletal sclerosis
- two forms - "malignant" (autosomal recessive; die shortly after birth); "benign" (autosomal dominant; live to adulthood)

Dwarfism
- **Achondroplastic Dwarfism**
 - Autosomal dominant; 80% of cases new mutations
 - Most common disease of the growth plate
 - defect in proliferation of chondrocytes
 - mutation in FGF receptor; inhibition of cartilage formation
 - Normal trunk length, shortened limbs, enlarged head
 - Prominent forehead – “frontal bossing”
 - NO changes in longevity, intelligence, or reproductive status
 - Premature closure of growth plate; Normal growth hormone levels
- **Thanatophoric dwarfism/dysplasia**
 - most common form of lethal dwarfism
 - mutation in FGF receptor
 - respiratory insufficiency due to underdeveloped thoracic cavity

Paget’s Disease
- **Osteitis Deformans - “matrix metabolic madness”**
- **Presentation**
 - Elderly male
 - Bone pain, axial skeleton – pelvis/skull/femur
 - Cranial nerve compression of nerves, thickened skull (↑’d hat size)
- **Mechanism (?pararmyxovirus)**
 - Early phase – inflammatory, Increased osteoclastic resorption with disordered osteoid synthesis
 - Late phase – burned out sclerosis
- **most serious consequence – development of osteosarcoma (1 - 10%) - jaw, pelvis, or femur**
- **Increased alkaline phosphatase, Tile-like mosaic of osteoid formation pathognomonic**
- **Urinary excretion of hydroxyproline**
Osteomyelitis

- Clinical course
 - fever, systemic illness
 - 60% positive blood cultures, radionuclide scans may be helpful if X-rays negative
- Associations
 - Developed countries, dental/sinus infection → bone
 - Compound fractures
 - Toes and feet of diabetics with chronic ulcers; bone surgery
 - Intravenous drug use
 - Underdeveloped countries, hematogenous spread
 - Ends of long bones most common (esp. children); also vertebrae in adults

Osteomyelitis

- Pathogenesis
 - 80-90% (penicillin-resistant) ***Staph. aureus***.
 - complication of sickle cell – Salmonella
 - drug addicts – Pseudomonas
 - infants/neonates – Group B streptococcus
 - TB – vertebrae (Pott’s disease and Psoas abscess)
- Morphology
 - sub-periosteal chronic nidus of infection = Brodie’s abscess
 - smoldering infection → osteoblastic activity → Garre’s sclerosing osteomyelitis
 - devitalized bone (sequestra) surrounded by reactive bone formation (invulcrum)
 - draining sinus tracts to surface
 - Squamous cell carcinoma at orifice of sinus tract

Fibrous dysplasia

- benign disorder; risk of pathologic fracture
 - localized bone defects found incidentally
- replacement of bone and marrow with abnormal proliferation of haphazardly arranged woven bone
- monostatic (single site) – 70%
 - 70% childhood, arrests at puberty
 - involves ribs, femur, tibia
- polystatic form (multi-site) – 25%
 - begins earlier, may extend into middle age
 - craniofacial in 50%
 - polystatic with endocrinopathy: 3-5%, skin pigmentation (café au lait spots), precocious sexual development = Albright’s

Aseptic Necrosis

- Causes
 - mechanical vascular disruption; thrombosis and embolism; vessel injury
 - corticosteroids; radiation therapy; sickle cell anemia; alcohol abuse
- Morphology
 - cancellous bone, marrow most affected; cortex not affected
 - subchondral wedge-shaped infarcts extending into epiphysis
 - empty lacunae (death of osteocytes)
 - increased bone density (sclerosis)
- Bone pain
- Pieces of dead bone that becomes separated is called a sequestrum

Other

- Aneurysmal bone cyst
 - Solitary, expansile, erosive lesion of bone
 - Adolescent females (2:1)
 - Metaphysis of lower extremity long bones
 - Secondary to localized hemorrhage due to trauma, vascular disturbance, or increased venous pressure
 - Sometimes secondary to tumors or fibrous dysplasia
 - Tenderness and pain with limited range of motion
 - Appears as cyst on x-ray

Osteoporosis

- Reduced bone mass with increased porosity & thinning of trabeculae & cortex
- Involves entire skeleton, but some areas more affected than others
- Increased risk of fractures: femoral neck, vertebral compression fractures, Colles fracture of wrist
- Not detected by x-ray until 30-40% loss; serum calcium, phosphorus, alkaline phosphatase normal
- Rx: estrogen replacement therapy, bisphosphonates, PTH, adequate Vit D & calcium, exercise

www.bonetumor.org
Osteoporosis
- **Primary:**
 - *senile:* normal age-related, steady decline in bone mass after 4th decade
 - Reduced replicative potential of osteoblasts relative to osteoclastic break-down
 - Loss accentuated by reduced physical activity with age
 - Women/whites more severely affected due to lower peak bone mass
- **Secondary:** hyperparathyroidism, hypogonadism, pituitary tumors, corticosteroids, multiple myeloma

Primary Bone Tumors -- benign
- **Osteoid Osteoma**
 - Interlacing trabeculae of woven bone surrounded by osteoblasts
 - <2 cm in proximal tibia and femur, pain controlled by NSAIDs
- **Osteoblastoma**
 - Same morphology as osteoid osteoma but found in vertebrae
- **Giant cell tumor (20-40)**
 - Epiphysis of long bones
 - Locally aggressive (necrosis, hemorrhage, reactive bone formation), *soap bubble* appearance on XR, spindle shaped cells with *giant cells* (fused osteoclasts)

Primary Bone Tumors -- malignant
- **Osteosarcoma (men 10-20)**
 - Metaphysis of long bones
 - Associated with Paget's of bone, LiFraumeni, bone infarcts, radiation, retinoblastoma, multiple enchondromas
 - Codman's triangle = elevated periosteum
- **Ewing's Sarcoma (boys <15)**
 - Anaplastic small blue cells (look like lymphocytes: lymphoma, rhabdomyosarcoma, neuroblastoma, oat cell carcinoma)
 - “Onion-skin” of bone and Homer-Wright Rosettes, diaphysis, t(11:22)
 - Medullary cavity; anemia, systemic symptoms (fever)
- **Chondrosarcoma (Men 30-60)**
 - Can arise from osteochondroma
 - Axial skeleton

Palmar, Plantar, Penile Fibromatoses
- Dupuytren's contracture (palmar)
 - Irregular or nodular subcutaneous thickening of the palmar fascia with fibrosis, deposition of collagen
 - Either unilaterally or bilaterally (50%)
 - Slowly progressive flexion contracture, mainly of fourth and fifth fingers
- Plantar involvement occurs without flexion contracture
- Penile fibromatosis (Peyronie's disease) occurs as a palpable induration or mass on the dorsolateral aspect of the penis
- May be genetic; males>females; 20-25% may stabilize; others may resolve or recur following resection

Desmoid – Aggressive Fibromatosis
- Extra-abdominal: musculature of the shoulder, chest wall, back and thigh
- Abdominal desmoids
 - Women
 - Musculoaponeurotic structures of the anterior abdominal
 - During or following pregnancy
- Intra-abdominal desmoids: mesentery or pelvic walls, often in patients having Gardner's syndrome
- Reaction to injury, genetic factors; may recur if incompletely excised
- Unicentric, unencapsulated, infiltrate surrounding structures
- May recur after excision
Other Non-Neoplastic Conditions

• Nodular (Pseudosarcomatous) Fasciitis
 – Reactive fibroblastic proliferation – may occur after trauma
 – several weeks history of a solitary, rapidly growing, painful mass
 in extremities
 – young and middle-aged adults of either sex
 – attachment to fascia with apparent invasive characteristics

• Traumatic Myositis Ossificans
 – characterized by presence of metaplastic bone; not restricted
to skeletal muscle; not inflammatory; not always ossified
 – preceded by trauma; most often extremities in young, athleticism active males

• Lipoma/Liposarcoma
 • Lipomas
 – lipomas are the most frequent soft tissue tumor
 – peak incidence 5th and 6th decades
 – arise in subcutaneous tissues, 5% multiple, usually small
 with delicate capsule
 • Liposarcomas - uncommon
 – arise from primitive mesenchymal cells; no assoc. with
 adipose tissue
 – retroperitoneum and deep tissues of the thigh (less
 frequently in the mediastinum, omentum, breast, and axilla)
 – peak in 5th to 7th decades
 – Large, multilobulated with projections into surrounding
 tissues; cystic softening, hemorrhage, and necrosis are
 common
 – large, bulky tumors of deep tissues or cavities often recur
 after resection; well-differentiated forms metastasize late or
 not at all

Leiomyoma/Leiomyosarcoma

• Leiomyoma
 – >95% of leiomyomas in female genital tract
 – in addition to female genital tract, leiomyosarcomas
 occur in the retroperitoneum, wall of the
 gastrointestinal tract, and subcutaneous tissue
 – benign - small, multiple, adolescence and early
 adulthood
• Leiomyosarcoma
 – malignant – uncommon
 – superficial - good prognosis; deep - poor prognosis
 – Histologically, leiomyosarcoma is differentiated from
 leiomyoma by the number of mitoses per high
 power field

Rhabdomyosarcoma

• Rhadobomyosarcoma
 – Children; one of more common soft tissue tumors in
 head/neck/urogenital areas; highly malignant
 – rapidly enlarging masses located near surface of body
 – deep neoplasms grow to large masses; 20-40% have
 metastases at diagnosis
 – SARCOMA BOTRYOIDES - variant of embryonal form;
grapelike clusters, occurs in children under 10; nasopharynx,
bladder, vagina
 – Stain with vimentin
 • Synovial Sarcoma
 – Multipotential mesenchymal cells, not synovial cells
 – develop in vicinity of large joints (knee); deep seated mass that
 has been noted for several years;
 – morphologically resembles synovium
 – t(X;18) translocation

Vulva

• Bartholin cyst - acute infection of Bartholin gland
 may lead to blocked duct with abscess; excise or
 permanently open duct
• Vulvar vestibulitis - glands at posterior introitus can
 be inflamed; chronic, recurrent condition is very
 painful and can lead to small ulcerations; surgical
 removal of inflamed mucosa may help
• Lichen simplex chronicus—aka hyperplastic
dystrophy
 – Results from chronic rubbing/scratching secondary
to pruritus
 • Can occur in eczema, psoriasis, nervousness, etc.
 – thickening of vulvar squamous epith. and
 hyperkeratosis
 – Not precancerous

Vulva – Miscellaneous Disorders

• Lichen sclerosus—aka chronic atrophic vulvitis
 – Thinning of epidermis, degeneration of basal
 cells, replacement of dermis with fibrous tissue
 and lymphocytic infiltrate
 • Lymphocytic cell infiltrate --- underlying dermal
 fibrosis
 – Epidermis becomes thinned, scarred, and
 hyperkeratotic
 • Skin is pale gray and “parchment-like”
 – Labia is atrophied
 – Most common after menopause
 – not precancerous, but risk of subsequent
 carcinoma is 1-4%
Vulva – Neoplasms of the Vulva

• Papillary hidradenoma
 – Most common benign tumor of the vulva
 – Presents as a nodule at labia majora or interlabial folds
 – Consists of tubular ducts with myoepithelial layer
 – Characteristic of sweat glands and sweat gland tumors
 – Cure is via simple excision

• Condyloma acuminatum – benign sq. cell papilloma
 – Caused by HPV (usually types 6 and 11)
 – A proliferation of stratified squamous epithelium
 – Wartlike lesions, usually multiple and coalescing
 • Koilocytic atypia (nuclear atypia and perinuclear vacuolization)
 • In healthy individuals, it will regress

Vulva - Cancer

• Vulvar carcinoma—rare; 3% of all female genital ca; 85% squamous cell
 – Peak occurrence in older women
 – Preceded by pre-malignant changes
 • Vulvar intraepithelial neoplasia (VIN) 1-3, and/or vulvar dystrophy
 • Associated with high risk HPV (types 16, 18, 31, 33)
 • Same ones that cause sq. cell CA of the cervix and vagina
 • Other HPV types cause papillomatous lesions elsewhere
 • Associated with squamous cell hyperplasia and Lichen sclerosus

Extramammary Paget Disease

– Large tumor cells in epidermis of labia majora demarcated from normal epithelial cells
– Present with pruritic, red, crusting, sharply demarcated area
– Cells show apocrine, eccrine and keratinocyte differentiation
– Clear cells containing glycogen
– Sometimes associated with underlying adenocarcinoma of the apocrine sweat glands

Vagina

• Atresia/total absence (extremely rare)
 – Deformed/non-functioning vagina, or total lack of vagina (vaginal agenesis)
 – Usually manifests at puberty due to amenorrhea
 – Disruption of uterovaginal flow requires emergent surgery

• Septate/double vagina
 – Rare; failure of total fusion of mullerian ducts (longitudinal septum), or the failure of mullerian ducts to fuse with the urogenital sinus (transverse septum)
 – Septum that runs either longitudinally or transverse
 – May be asymptomatic
 – A transverse septum is more likely to block uteran outflow and result in amenorrhea

Gartner duct cyst

– Retention cyst arising from Gartner’s ducts occurring along the remnants of Wolffian ducts
– Usually asymptomatic and small

Vaginal intraepithelial neoplasia (VAIN) – CIN of the vagina

– Precancerous lesion; high risk papilloma viruses (types 16, 18), may be multicentric
 • Analogous to high-grade CIN
 • 10-30% associated with squamous neoplasms in vulva or cervix
– Graded as mild, moderate, or severe
– White or pigmented plaques on the vagina
– Risk of progression to invasive cancer ↑ with age/immunosuppression

Squamous cell carcinoma

– Rare; (0.6/100,000 yearly)
– 95% squamous cell, upper posterior vagina
– Usually due to extension of sq. cell CA of the cervix or vulva
 #1 Risk factor – sq. cell CA in cervix or vulva
 Vagina usually not the primary site
Vagina

- **Adenocarcinoma (clear cell variant)**
 - Clear cell variant found in daughters of mothers who took diethylstilbestrol (DES), an anti-abortifacient (only 0.14% develop it)
 - Presents age 15-20
 - Vaginal adenosis = precursor to clear cell adenocarcinoma
- **Embryonal rhabdomyosarcoma**
 - <5 yo; tumor of malignant embryonal rhabdomyoblasts; bulky mass
 - may fill and project out of vagina (sarcoma botryoides)
 - Projection resembles a “bunch of grapes”

Cervix

- **Endocervical polyps**
 - Soft, mucoid polyps w/loose, fibromyomatous stroma
 - inflammatory proliferation of cervical mucosa – NOT TRUE NEOPLASMS
 - found in 2-5% of adult women
 - Most in endocervical canal; may protrude thru os
 - Protrusion can lead to irregular spotting and post-coital bleeding
 - associated with dilated mucous-secreting endocervical glands
 - inflammation, squamous metaplasia
 - Tx - simple curettage or surgical excision

- **Cervical Intraepithelial Neoplasm (CIN)**
 - HPV most important agent (95% of cervical ca), but NOT only factor in development of
 - Viral gene product E6—interrupts cell death cycle by binding p53
 - E7—bind RB and disrupts cell cycle
 - CIN stages
 - CIN I – mild dysplasia involving lower 1/3 – raised or flat lesion, indistinguishable from condylomata acuminata
 - CIN II – moderate dysplasia – atypical cells in lower 2/3
 - CIN III – severe dysplasia/carcinoma in situ (if it’s full thickness)
 - **Koilocytes may be present at all stages**
 - Takes 10 years to go CIN I → CIN II
 - Takes another 10 to go CIN II → CIN III

- **Squamous cell carcinoma – 95% of cervical cancer**
 - Peak occurrence in middle aged women
 - Usually from pre-existing CIN at squamocolumnar junction
 - PAP decreases mortality via early detection of CIN and CA
 - Intraepithelial and invasive neoplasm
 - 3 forms - fungating (exophytic), ulcerating, infiltrative
 - extends by direct continuity
 - metastasizes to lymph nodes; liver, lungs, bone marrow
 - PAP decreases mortality via early detection of CIN and CA
 - Histology - 95% large cells, keratinizing or non-keratinizing

Cervix

- **Cinical Course/Management**
 - Symptoms - irregular vaginal bleeding, leukorrhea, bleeding or pain on coitus; dysuria
 - PAP smear is insufficient for prevention/diagnosis
 - All abnormalities visualized by colposcopy
 - Acetic acid application will reveal CIN
 - White patches of cervix; follow up with punch biopsy
 - CIN I - Pap smear follow-up
 - CIN II, III – cryotherapy, laser, loop electrosurgical excision procedure (LEEP), or cone biopsy
 - Invasive CA - hysterectomy and/or radiation (depends on stage)
 - Survival: 80-90% stage I; 75% stage II; 35% stage III; 10-15% stage IV

Uterus

- **Endometrial Hyperplasia**
 - Abnormal proliferation of endometrial glands, usually caused by excess estrogen stimulation
 - Excess estrogen may be due to...
 - Anovulatory cycles, polycystic ovary dz, estrogen-secreting ovarian tumors (ex. granulosa cell tumors), and estrogen replacement therapy
 - Manifest clinically with postmenopausal bleeding
 - Can be a precursor lesion of endometrial carcinoma
 - Risk of CA directly correlated with degree of cellular atypia
 - Simple hyperplasia (aka cystic or mild) rarely leads to carcinoma
 - high grade (atypical or adenomatous + atypia) - cellular atypia, irregular epithelium; 25% lead to carcinoma
Female Genital Uterus

• **Endometrial Carcinoma:**
 - Most common invasive cancer of female genital tract and has best prognosis
 - Associated with prolonged estrogen stimulation, nulliparity, diabetes, obesity, hypertension, infertility
 - 55-65 year old women; present with bleeding
 - Most are well differentiated with a glandular pattern (85% adenocarcinoma), can be polyploid or diffuse
 • Less common variants: papillary serous - older women, more aggressive; tumors with squamous elements
 - Most forms spread by direct extension, metastasize late

• **Endometrial Polyps:**
 - benign sessile masses of any size
 - Asymptomatic or irregular bleeding
 - Most common cause of menorrhagia 20-40 age group
 - Two types - functional endometrium or cystic hyperplastic
 - association with endometrial hyperplasia and tamoxifen

• **Hyperestrinism**
 - Anovulatory cycles: excessive estrogen stimulation relative to progesterone
 - associated with polycystic ovarian syndrome, obesity, malnutrition, systemic disease
 - Common at menarche and perimenopausal
 - Inadequate luteal phase: deficient progesterone production by corpus luteum
 • Manifests as infertility, menorrhagia or amenorrhea
 - Iatrogenic: oral contraceptives, estrogen replacement

• **Leiomyoma (fibroids)**
 - Most common tumors in women
 - Reproductive age; blacks>whites
 - Estrogen sensitive
 - characteristic whorled pattern of smooth muscle bundles
 - Often asymptomatic; may cause bleeding, infertility

• **Leiomyosarcoma:**
 - 40-60 year olds; not preceded by leiomyoma; rare
 - characterized by cellular atypia and high mitotic index: >10 mitoses per high power field (400X)
 - metastasis to lungs, bone, brain, and abdomen

Menstrual Cycle

• **Proliferative Phase:** estrogen mediated
 - proliferation of glands and stroma

• **Ovulation:** stimulated by LH surge
 - Confirmed by: basal vacuolization of epithelium, secretory or predecidual changes

• **Secretory Phase:** progesterone mediated
 - Most prominent during 3rd week, tortuous glands and spiral arteries; 4th week shows exhaustion and gland atrophy

• **Menstrual Phase:** prostaglandin mediated
 - Prostaglandins → vasospasm and necrosis → spasm of the myometrium
 - basal layer remains, upper 2/3 of endometrium shed

Fallopian Tubes

• **Inflammation:** PID causes suppurative salpingitis, may result in hydrosalpinx; *N. gonorrhoeae* – 60% of cases, *C. trachomatis* also common
 - Complications: infertility, adhesions

• **Neoplasia:**
 - paratubal cysts – Mullerian duct remnants form hydatid(s) of Morgagni found in fimbria and ligaments; translucent and filled with serous fluid
 - Uncommon: adenomatoid, papillary adenocarcinoma
Testicular Cancer

- **Sex Cord-Stromal Tumors (5%)**:
 - Leydig (Interstitial) cell tumor - 20-60 years old, most benign, androgen producing
 - Presents as testicular swelling, gynecomastia or precocious puberty
 - Brown, homogenous, circumscribed nodules; Reinke crystals
 - Sertoli cell tumor (Androblastoma) - Gray-white, homogenous, trabeculae resemble seminiferous tubules
 - Secrete androgens, but not clinically significant; benign

Endometriosis

- Presence of endometrial glands/stroma outside of the uterus
- Found in ovaries, uterine ligaments, rectovaginal septum, pelvic peritoneum
- Common cause of INFERTILITY
- Dysmenorrhea, dyspareunia, dyschezia
- Tissue under hormonal control = cyclic changes w/blooding during normal menstrual cycle
- “chocolate cysts” in ovaries (blood, lipid debris); scarring of fallopian
- Likely causes: Retrograde menstruation, Differentiation of dispersed coelemic epithelium, Lymphohematogeneous spread

Ectopic Pregnancy

- Implantation of fetus in any site other than uterus
 - Tubes (90%), ovary, abdominal cavity, cornual end
- 1/150 pregnancies
- Predisposing factors – PID w/ chronic salpingitis (35-50%), peritubal adhesions from appendicitis or endometriosis, leiomyomas, previous surgery, IUD
- Embryo undergoes usual development, but placenta is poorly attached, may separate and cause hematosalpinx or rupture
- Presents most commonly with pain, pelvic hemorrhage, shock, sx of acute abdomen – MEDICAL EMERGENCY!

Polycystic Ovary Disease

- previously known as Stein-Leventhal syndrome
- “Numerous cystic follicles”
- persistent anovulation, obesity, hirsutism, and rarely virilism
- Ovaries(bilateral) 2x normal size and studded w/subcortical cysts; theca interna hyperplasia; Corpora Lutea ABSENT
- LH stimulation of theca lutein cells → excessive production of androgens which is converted to estrogens
- Caused by unbalanced or asynchronous release of LH by pituitary: ↑ LH, ↓ FSH, ↑ testosterone
- Associated w/ Insulin resistance; ↑ risk of endometrial cancer; prolactinoma may be involved in 25%

Ovarian Epithelial Tumors

- 65-70% overall frequency, 90% of malignant ovarian tumors
- histology: cystadenomas, cystadenofibromas, adenofibromas
- risk of malignancy increases with amount of solid epithelial growth
- Clinical signs: low abdominal pain/enlargement, GI complaints, urinary complaints, ascites with peritoneal extension (exfoliated cells in fluid)
- Metastasis to liver, lungs, GI, regional nodes, opposite ovary common
- 80% of serous and endometrioid tumors positive for CA-125
- BRCA is a marker for increased risk
- fallopian tubal ligation and OCT reduce relative risk

Ovarian Epithelial Tumors

- **Serous tumors**
 - Tall, ciliated columnar epithelial lined serous fluid filled cysts, on surface of ovary
 - Can be benign or boarderline (age 20-50) or malignant (>50)
 - Serous cystadenocarcinomas are most common malignant ovarian tumor (40%)
 - Often bilateral and contain psammoma bodies
 - Benign: smooth cyst wall, no epithelial thickening
 - Boarderline: increasing papillary projections into cyst, some nuclear atypia, no destruction of stroma
 - Peritoneal spread with desmoplasia causing intestinal obstruction
Ovarian Epithelial Tumors

- **Mucinous tumors**
 - Rare before puberty or after menopause
 - Large number of big cysts filled with glycoproteins, not on surface, **not bilateral**, tall columnar epithelium **without cilia**
 - Associated with **pseudomxoma peritonei**: extensive mucinous ascites

- **Endometrioid tumors**
 - Unlike mucinous and serous, most are endometrioid tumors are malignant
 - Contain tubular glands that resemble endometrium
 - Combination of cystic and solid areas, 50% bilateral

- **Clear Cell Adenocarcinoma**
 - Large cells with clear cytoplasm

- **Cystadenofibroma**
 - Pronounced desmoplasia underlying columnar epithelial neoplasia
 - Metastatic spread is uncommon

- **Brenner tumors**
 - Uncommon transitional cell tumors, sometimes found with mucinous cystadenomas
 - Usually unilateral, can become quite massive
 - Sometimes surrounded by plump fibroblasts with hormonal activity
 - Can secrete estrogens

Stromal Ovarian Tumors

- **Ganulosa-Thecal (mixed: gran=malignant, thecal=benign)**
 - Sheet/cords of cuboidal to polygonal cells
 - **Call-Exner** bodies: small follicles w/eosinophilic secretions
 - Estrogen secreting: precocious puberty
 - Assoc. w/endometrial hyperplasia/carcinoma (adult women)

- **Thecoma-Fibroma (benign)**
 - Solid, bundles of spindle shaped fibroblasts w/lipid droplets
 - **Meig’s Syndrome**: R-sided hydrothorax, ovarian tumor, ascites
 - Hormonally inactive
 - Assoc. w/ basal cell nevus syndrome

Teratomas

- Germ cell tumor with all three germ layers
- From totipotent cells → usually found in gonads
- 3 categories:
 - Mature (benign) – most are cystic (dermoid cysts), tissue resembles adult tissue, unilateral, karyotype 46,XX, reproductive females
 - Immature (malignant) – rare, tissue resembles fetal or embryonic tissue, adolescent women
 - Frequently metastasize through capsule
 - Monodermal (specialized) – rare, unilateral, may be functional
 - struma ovari – thyroid tissue, can cause hyperthyroid
 - ovarian carcinoid – from intestinal epithelium, produces 5-HT

Non-Neoplastic Breast Disease

FIBROCYSTIC CHANGE:
- Most common breast condition
 - Bilateral/multiple formation of blue-domed cysts that result in pain/tenderness that varies cyclically
 - Causes microcalcification (confused with cancer)

GYNECOMASTIA:
- Most commonly caused by cirrhosis; usually unilateral

PROLIFERATIVE DISEASE:
- Proliferation of epithelial/glandular tissue; increased risk for carcinoma if >4 epithelial layers or atypia
- **Sclerosing Adenosis**
 - Increased numbers of acini compressed by fibrous tissue (silt-like); **slight increase in cancer**
Inflammatory Breast Disease

- Fat necrosis: trauma-related; chalky, white, hard lesions from saponification
- Lactation Mastitis: staph infection from nursing; may → abscess
- Galactocele: cystic dilation with viscous “milk” after lactation cessation
- Mammary Duct Ectasia: interstitial granulomatous inflammation leading to duct dilation; thick/sticky nipple discharge, lump/retracted nipple; post-menopause
- Granulomatous Mastitis: epithelial granulomas in multiparous women; may be a hypersensitivity reaction secondary to lactation
- Silicone Breast Implants: → chronic inflammation/fibrosis

Ductal Breast Carcinoma

- Typically divided into Ductal Carcinoma in Situ (DCIS) and Invasive Ductal Carcinoma
- DCIS: periductal concentric fibrosis with chronic inflammation
 - Linear or branching microcalcifications seen on mammography; associated with intraductal necrosis
- Invasive: streaks of white elastic stroma with foci of calcification, irregular borders signifying escape from the ductal basement membrane; highly scirrhous, desmoplastic tumor
- If mass is palpable, half of patients will have lymph node metastasis
- Fixation to chest wall, lymphedema → peau d’orange, cooper ligament tethering to skin, retraction of nipple

Non-ductal breast carcinoma

- **Lobular carcinoma in-situ**
 - Proliferation in one or more terminal ducts – distended lobules
 - Incidental finding on biopsy for another reason – nonpalpable
 - Often multifocal and bilateral, can progress to carcinoma
 - No cell adhesion – lack e-cadherin
- **Invasive lobular carcinoma**
 - Tends to be bilateral and multicentric
 - Single file cells, can be concentric and have bull’s eye appearance
 - Present as palpable mass or density on mammogram
 - Well differentiated tumors express hormone receptors

Non-ductal breast carcinoma

- **Medullary carcinoma**
 - Associated with BRCA-1 mutation
 - Bulky, soft tumor with large cells and lymphocytic infiltrate
- **Colloid carcinoma**
 - Occurs in older women, grows very slowly
 - Cells surrounded by extracellular pale gray-blue mucin
- **Tubular Carcinoma**
 - Women in late 40’s
 - Well-formed tubules in terminal ductules
 - Absence of myoepithelial layer
 - Multifocal or bilateral tumors

Spontaneous abortions

- 10-15% of recognized pregnancies; probably close to 22% of all conceptions; chromosomal studies are recommended with habitual or recurrent abortion or with malformed fetus
- **fetal influences**
 - defective implantation
 - genetic or acquired developmental abnormality
 - chromosomal abnormalities in >50%
- **maternal influences**
 - inflammatory diseases (local and systemic),
 - uterine abnormalities
 - infection
- **Placental abnormalities**
 - placenta acreta - partial or complete absence of the decidua with adherence of placenta directly to myometrium; failure of placental separation may cause postpartum bleeding (life threatening); up to 60% association with placenta previa; uterine rupture (placenta percreta)
 - placenta previa - implantation in the lower uterine segment or cervix associated with serous antepartum bleeding and premature labor
 - placenta abruptio - separation of the placenta prior to delivery
- **Twin placenta**
 - monochorionic implies monozygotic twins; may have one or two amnions
 - dizygotic twins usually have dichorionic, diamniotic placenta
- **Placenta**
 - Placental abnormalities
 - placenta acreta - partial or complete absence of the decidua with adherence of placenta directly to myometrium; failure of placental separation may cause postpartum bleeding (life threatening); up to 60% association with placenta previa; uterine rupture (placenta percreta)
 - placenta previa - implantation in the lower uterine segment or cervix associated with serous antepartum bleeding and premature labor
 - placenta abruptio - separation of the placenta prior to delivery
- **Twin placenta**
 - monochorionic implies monozygotic twins; may have one or two amnions
 - dizygotic twins usually have dichorionic, diamniotic placenta
Pre-eclampsia/eclampsia

- **Pre-Eclampsia**: hypertension, proteinuria, and edema
- **Eclampsia**: add convulsions, CNS disturbances, and DIC
- 6% of pregnant women; last trimester; primiparas
- DIC in eclampsia results in lesions in liver, kidneys, heart, placenta, and brain
- The primary pathology appears to involve inadequate placental blood flow and ischemia: trophoblast-dependent
- HELLP syndrome - hemolysis/elevated liver enzymes/low platelets associated with microangiopathic hemolysis with DIC and fibrin deposition
- Eclampsia is heralded by convulsions. It usually represents vascular damage to the CNS with the development of DIC.
 - Microscopic lesions include arteriolar thrombosis, arteriolar fibrinoid necrosis, petechial hemorrhages, and diffuse microinfarcts.

Other Moles

- **Incomplete (Partial) Mole**
 - Villi INCOMPLETELY involved; usually focal
 - karyotype is triploid (69,XXY) or tetraploid (92,XXXY)
 - *EMBRYO IS VIABLE for weeks, so fetal parts may be found*
 - Presentation with nonviable fetus and irregular vaginal spotting, but uterine size NOT increased and NO increased risk of choriocarcinoma
- **Invasive mole**
 - mole that penetrates and may even perforate uterine wall; tumor is locally destructive
 - vaginal bleeding and irregular uterine enlargement; persistent elevated HCG; may present several weeks after a mole has been evacuated
 - hydropic villi may embolize to lungs and brain, but do not grow as true metastases; responsive to chemotherapy

Complete (Classic) Mole

- characterized by growth and cystic swelling of COMPLETE chorionic villi with trophoblastic proliferation
- NO EMBRYO IS PRESENT; uterus is filled with grape-like clusters; volume is MUCH GREATER than in normal pregnancy
- more than 90% have 46,XX diploid pattern, all derived from the sperm (duplication of uniploid sperm; 46YY not viable)
- proliferation of both cytotrophoblasts and syncytiotrophoblasts
 - grape-like clusters of swollen, watery chorionic villi
 - villi are not atypical in structure
- presents about 14th week (8-24 wk) with vaginal bleeding, uterus larger than normal pregnancy, high HCG levels
- about 10% develop persistent trophoblastic disease and 3-5% WILL DEVELOP CHORIOCARCINOMA

Choriocarcinoma

- epithelial malignancy of trophoblastic cells from *previously normal or abnormal pregnancy*
- rapidly invasive, widely metastasizing; but responds well to chemotherapy
- 50% arise in hydatidiform (classic) moles (1 in 40 moles), 30% in previous abortions, 22% in normal pregnancies
- *no chorionic villi*; proliferation of both cytotrophoblasts surrounded by rim of syncytiotrophoblasts
- does not produce large, bulky mass
- produces high levels of HCG in absence of pregnancy
- metastases to lungs, vagina, brain, liver, kidney