Hematopoietic and Lymph Node Pathology

Red Blood Cell Maturation
&
Anemias

Normal Development

Differentiation of Hematopoietic Cells
Bone Marrow

Bone Marrow

Bone Marrow, RBC Precursors

RBC Expelling the Nucleus

Myeloid Maturation
Anemias

- Not a disease in itself
- Just a symptom, like a fever
- Must Understand why.
- Fix underlying cause
- Unpredicted outcomes

Anemia

- Acute
 - Trauma
 - Blood loss, either internal or external
 - Reticulocytes 10-15% in a week
- Chronic
 - Time to adapt
 - GI bleeds, colon ca
 - Increased demands of pregnancy

Anemia Workup

- History, History & More History
 - Age, sex, medications, duration...
- Physical
 - Nailbeds, mucus membranes....
- Lab
 - CBC
 - RBC size, shape, Hgb, RDW, MCV, MCHC
 - Reticulocyte count
 - Chemistries
 -Liver B & Tz, Parats
 -Bone Marrow
 - Fancy stuff

Erythrocytes

- Size
 - Anisocytosis (an/i-so/cytosis)
- Shape
 - Poikilocytosis (poikilo/cytosis)
 - Fragmented cells
- Hemoglobin content of cells and whole blood
 - HBG and HCT
 - MCH & MCHC
- Mean volume of the RBCs (MCV)
 - Uniformity (RDW)
- Cytoplasmic inclusions
 - Congenital problems
 - Sickle cell among others
Anemias by Etiology

- Blood loss
 - Acute, no time to accommodate
 - Trauma
 - Massively bleeding ulcer or esophageal varices
 - Chronically, slow with some adaptation
 - GYN loss
 - Ulcer
 - Colon cancer
- RBCs are ‘normocytic’
- Retic count better go up
- History and Physical

Anemias by Etiology

- Congenital
 - Hemoglobin
 - Sickle cell
 - Enzyme
 - G6PD
 - Membrane
 - Spherocytosis

Sickle Cell Disease

- Hemoglobin vs. hemoglobinopathy
- Genetic variants
- RNA editing
- Hemoglobinization inducers
- Other factors
- Relative mean survival for SC

Hemolytic Anemias

- Premature destruction or removal of RBCs
- Genetic
 - S5
 - Spherocytosis
- Acquired
 - Antibody mediated
- Intravascular
 - Antibody mediated
 - Free hemoglobin
- Extravascular

Problems of RBC Production

- Genetic related
- Nutritional deficits
 - Iron
 - B12
 - Dietary or problems of absorption?
 - Chronic gastritis
 - Folic acid
 - Chronic renal failure (no erythropoietin)
 - Aplasia of RBC line in bone marrow
Nutrient Deficit
- Inadequate dietary source?
- Absorption?
- Utilization?

Thalassemia
- Genetic
- Collection of problems of production of one of the hemoglobin chains
- Beta and Alpha chains

Thalassemia
- Microcytic
- Small RBCs
- Target cells
- Mismatched production of β and α chains
- Hemoglobin globs in RBC
- Reduced RBC survival

B12 Deficiency
- Dietary
- Pernicious Anemia
 - Absorption
 - Binding factor missing
 - Chronic gastritis
- Macrocytic anemia
 - Large cells
 - Delayed nuclear maturation
- Neurological signs
 - Myelin production

Macrocytes and Megaloblasts
- Macrocyte
- Large RBC
- Megaloblast
- Large BM precursor
- Folic acid can have similar look
- CNS with B12 only
 - Be careful correcting B12 deficiency with folic acid
 - Anemia corrects, but neurological problems progress
Folic Acid and B12

- DNA
- N^5-, N^10-Methylene FdR
- dTMP
- dUMP
- Thymidylate Synthetase

Iron Deficiency
- Dietary?
 - Rarely in US
 - How much anyway?
- Blood loss
 - Chronic
 - GYN
 - Colon cancer
- RBCs are
 - Microcytic
 - Hypochromic
 - Lack iron for hemoglobin production

Microcytic Anemia
- Small RBCs
- Iron deficiency
- Thalassemia

Iron Deficiency
- Problem is of excessive drive to store iron.
- Chronic inflammation
 - Arthritis
 - TB
 - Even cancer
- Most of incoming iron is sent to storage
 - Part of the normal response to inflammation
- In time anemia develops because of
 - Reduced iron for utilization
 - Not dietary lack or
 - Failed absorption

Anemia of Chronic Disease
- Over Production of RBCs
 - Believe it or not, it's not a good thing.
 - Response to increased need
 - High altitude living
 - Lung disease
 - Emphysema
 - Over production of erythropoietin
 - Renal disease
 - Tumors
 - Uncontrolled production at bone marrow level

Aplastic Anemia
- Something kills precursor in BM.
 - Virus
 - Radiation
 - Chemotherapy

Over Production of RBCs
Hemolytic Disease of Newborn

- Pregnant mother is Rh−, fetus is Rh+
- If mom should have antibodies to the Rh factor, they will cross the placenta.
- Destruction of baby’s RBCs
- Previous maternal exposure
 - Miscarriage
 - Previous delivery
 - Wrong transfusion
- Treatment: Mom gets Rhogam

WBC Disorders

- Quantity
 - Do we have enough WBCs
- Quality
 - If the number looks right, are the cells working?
 - Higher than expected number (leukocytosis)
 - Cell type
 - Reactive or
 - Neoplastic
 - Benign
 - Malignant
 - Leukopenia

Leukopenia

- Low WBC count
 - Under 3,000 per mm³
- Causes
 - Production problem
 - Sick BM
 - Replacement of BM space
 - Peripheral destruction
 - Autoimmune destruction
 - Sequestration of cells
 - Large spleen
 - Rheumatoid arthritis

Leukocytosis

- High WBC count in peripheral blood
 - >12,000 per mm³
- Cell type?
- Healthy Cells?
- Reaction to need
 - Pneumonia
 - Incr granulocytes; bacterial infection, necrosis
 - Incr monocytes; TB, brucella, rickettsia
 - Incr lymphocytes; virus, tumor response
 - Incr eosinophil; allergic, parasite
Distinguish Malignant Proliferation

- History and physical
- Maturity of cells
 - Visual inspection of blood smear
 - Flow cytometry
 - Nuclear maturity
 - Nucleoli
 - Cellular inclusions
- Chromosomal studies
- Bone marrow

Leukemia

- Malignant proliferation of WBCs and/or precursors.
- Classification
 - Cell line: Granulocytes or Lymphocytes
 - Cell population:
 - Chronic, mature, slower developing
 - Acute, immature cells, rapidly developing
- The big three features: All three cell lines affected
 - RBC
 - WBC
 - Platelets
- Causes
 - Chromosomal breaks, but why?
 - Viruses, chemical exposure, radiation...

Leukemia

- Organs involved
 - BM
 - Blood
 - Nodes
 - Liver and Spleen
 - Brain
- Common presenting symptoms
 - Recurrent serious infections
 - Pneumonia
 - Bleeding tendency
 - Anemia
 - Fever with no obvious cause
 - Bone pain

Lymphocyte Maturation

Lymphoid Malignancies

- ‘Solid’ vs. ‘Liquid’
 - Leukemia
 - Bone marrow predominately
 - Lymphoma
 - Lymph nodes
- Cell type and level of maturation
 - Cell size
 - CD typing
 - Where did it come from in the follicle?

Acute Lymphoblastic Leukemia

- Children
 - Less common, but does occur in adults
- Precursor B leukemia
 - CD19, TdT +
 - Ig locus t(12:21)
 - Marked BM replacement
- Precursor T leukemia
 - CD1 and TdT +
 - Chromosomal breaks
 - Adolescent males
 - Mediastinal mass
 - +/- spleen and liver
Acute Myelogenous Leukemia

- Myeloid line
 - Many subtypes
 - Level of maturation determines what malignant cells look like.
- Adults
 - Aure rods ->
- Adults
 - Rarely pure monocytic
- Symptoms
 - Infections
 - Mouth ulcers
 - Gingival hypertrophy (mono)

Chronic Lymphocytic Leukemia

- Mature lymphocytes
- High WBC count
- B-Cells
- Adult and older
- Indolent course
- Tissues
 - BM
 - Nodes
 - Liver and Spleen
- May accelerate
 - Blast crisis
 - Richter’s syndrome

Chronic Myelocytic Leukemia

- Middle age and older
- High WBC count
- Stem cell is malignant
- All phases present
- Low LAP (cells don’t work)
- Ph’ Chromosome + t(9;22)
- Organs
 - BM
 - Spleen
 - Blast crises
 - Soft tissue met
 - Chloroma

Ph’ Chromosome
Splenomegally in Chronic Granulocytic Leukemia

Myelofibrosis Etc
- Myelofibrosis
 - Scarring process
 - Reticulum fibers
 - Loss of marrow space
 - Extramedullary hematopoiesis
 - Metastatic cancer

Preleukemia
- RBC abnormalities easiest to spot.
- All cell lines have abnormal maturation.
- Chromosomal abnormalities
- Some end in leukemia
- Most end with myelofibrosis

Bleeding Disorders
- Takes three things working for hemostasis
 - Platelets
 - Clotting proteins
 - Vessels
- The question is always
 - Quantity
 - Quality

Platelet Related Bleeding
- Platelet problems
 - Petechiae
 - Bruises (purpura)
- Quantity
 - 120,000-400,000
 - Production
 - Destruction
- Quality
 - Aspirin
 - Renal failure
Clotting Factor Related Bleeding
- Hematoma
- Deep muscle
- Joint bleeds
- Bleeding gums
- Poor wound healing
- Quantity
- Can you make it
- Genetics
- Liver disease
- Quality

Hemophilia A & B
- Hemophilia A
 - X-linked recessive
 - Boys express
 - Factor VIII enzymatic deficiency
- Hemophilia B
 - Christmas Disease
 - Factor IX
 - Also X-linked recessive
 - Not as severe as VIII

Von Willebrand’s
- Factor VIII, ‘structural’
- Platelet binding
 - Collagen of damaged vessel
 - Platelet – platelet binding
- Clinically, bleeding looks more like platelet abnormality.
- Autosomal dominant
- Multiple types
 - Type I
 - Most common
 - Reduced quantity of vWF
 - Type II
 - Problem with multimeric form of vWF

Generic Platelet Problems
- Quantity (thrombocytopenia)
 - Lack of bone marrow production
 - Autoimmune destruction (ITP)
 - Heparin induced thrombocytopenia
 - Lack of stabilizing factor (TTP)
- Quality
 - Aspirin induced platelet dysfunction

Disseminated Intravascular Coagulation
- Runaway train
- Oil disaster
- Sepsis and endothelial cell injury
- Massive muscle injury
Diseases of Lymph Nodes

Lymph Node Disorders
- Reactive vs. Neoplastic
- History & Physical Exam
- Histological pattern
 - Nodal architecture recognizable?
 - Effaced?
 - Diagnostic inflammatory changes

Reactive Conditions
- Non-neoplastic reaction to
 - Infections, necrosis, tumors
- Histological pattern
 - Follicular
 - Sinusoidal
 - Specific patterns
 - Abscess
 - Granuloma

Neoplastic Diseases
- Classification is very important
- Treatment options
- Predicting outcome
- Histological pattern
 - Hodgkin lymphoma vs. Non-Hodgkin Lymphoma
 - Cell type (where did it come from in the node?)
 - Degree of differentiation (grade)
 - Diffuse or Follicular
- Stage (extent of spread)
 - Know the difference between stage and grade
- Systemic symptoms (so-called B-symptoms)
 - Fever
 - Night sweats
 - Weight loss
Non-Hodgkin Lymphoma, SLL
- Small cell lymphocytic lymphoma
- Tissue phase of CLL
- Diffuse replacement of nodal architecture
- Long-lived B-cells (CD19, CD20)
- Surface immunoglobulins

Non-Hodgkin Lymphoma, Follicular Pattern
- Nodal architecture is effaced
- Nodular or follicular pattern
- ‘Centrocytic’ cells (from germinal centers)
- B-cell markers
- Surface immunoglobulins

Burkitt’s Lymphoma
- Two types
 - American
 - Retroperitoneal
 - African
 - Jaw
 - EB virus association?
- ‘Starry sky’ appearance
- B-cell

African Burkitt’s

Hodgkin’s Disease
- Distinguished from NHL by
 - Reed-Sternberg cell -->
 - In its proper background
 - This is the malignant cell
 - The others are reactive
 - Bimodal age distribution
 - Distinctive patterns
 - Nodular sclerosis
 - Lacunar cells -->
 - Mixed-cellularity
 - Lymphocyte predominate
Hodgkin’s Staging

- **Stage I**
 - Single node or single extranodal site (I-e)

- **Stage II**
 - Two or more nodal regions on the same side of the diaphragm

- **Stage III**
 - Both sides of the diaphragm
 - +/- Splenic involvement (III-s)
 - +/- Extranodal (III-e)

- **Stage IV**
 - Multiple disseminated foci

Multiple Myeloma

- Plasma cell malignancy
- Term refers to holes in the bone because of nest of plasma cells
- The replace marrow space
- The cells make an intact, or fragment, of immunoglobulin
- Real problems with infections
 - No inflammatory cells
 - Bleeding
 - Protein coats platelets
 - Renal failure
 - Protein clogs tubules

Multiple Myeloma

- Protein electrophoresis
- Large amount of abnormal protein in blood
- Immunoglobulin
- Patient sample
 - Huge gamma band
 - All of it is kappa light chain