

Bone Marrow

Megakaryocyte

Anemias

- Not a disease in itself
- Just a symptom, like a fever
- Must Understand why.
- Fix underlying cause
- Unpredicted outcomes

Anemia

Acute

- - Reticulocytes 10-15% in a week
- Chronic
- Time to adapt
 - GI bleeds, colon ca

Increased demands of pregnancy

Anemia Workup

- History, History & More History Age, sex, medications, duration....

- - CBC
 RBC size, shape, HgB, RDW, MCV, MCHC

 - Chemistries Iron, B-12, Folate

Erythrocytes

- Shape
 - Poikilocytosis (poikilo/cytosis)
 Fragmented cells
- Hemoglobin content of cells and whole blood HBG and HCT
 MCH & MCHC

- Uniformity (RDW)
 Cytoplasmic inclusions
 - Congenital problems
 Sickle cell among others

Anemias by Etiology

- Congenital Hemoglobin
- Enzyme
- G6PD
- Membrane
- Spherocytosis

Problems of RBC Production

- Genetic related
- Nutritional deficits
 - ∎ Iro
 - B12
 - Dietary or problems of absorption?
 - Chronic gast
- Chronic renal failure (no erythropoietin)
- Aplasia of RBC line in bone marrow

Nutrient Deficit

- Inadequate dietary source?
- Absorption?
- **Utilization?**

Thalassemia

- production of β and a chains
- Reduced RBC survival

B12 Deficiency

- - Chronic gastritis

Macrocytes and Megaloblasts

Macrocyte Large RBC

- Large BM precursor
 Folic acid can have similar
 look

- Anemia corrects, but neurological problems progress.

Anemia of Chronic Disease

- Problem is of excessive drive to store iron.
 - Chronic inflammation
- Arthritis
- 🗕 TB
- Even cancer
- Most of incoming iron is sent to storage
 Part of the normal response to inflammation
- In time anemia develops because of
 - Reduced from for u

Hemolytic Disease of Newborn

- Pregnant mother is Rh⁻, fetus is Rh⁺
- If mom should have antibodies to the Rh factor, they will cross the placenta.
- Destruction of baby's RBCs
- Previous maternal exposure
- Miscarriage
- Previous delivery
- Wrong transfusion
- Treatment: Mom gets Rhogam

WBC Disorders

Quantity

- Do we have enough WBCs
- Quality
- If the number looks right, are the cells working?
- Higher than expected number (leukocytosis)
 - Cell type
 - Reactive orNeoplastic
 - Benian
 - Malignan
- Leukopenia

Leukopenia

Low WBC count

- Under 3,000 per mm³
- Causes
 - Production problem
 Sick BM
 Replacement of BM space
 - Peripheral destruction
 Autoimmune destruction
 - Sequestration of cells
 - Large spleen
 - Rheumatoid arthritis

Leukocytosis

- High WBC count in peripheral blood
 >12,000 per mm³
- Cell type?
- Healthy Cells?
- Reaction to need
- Pneumonia
- Incr granulocytes; bacterial infection, necrosis
- Incr monocytes; TB, brucella, rickettsia
- Incr lymphocytes; virus, tumor response
- Incr eosinophil; allergic, parasite

Distinguish Malignant Proliferation

- History and physical
- Maturity of cells
 - Visual inspection of blood smear
 - Flow cytometry
 - Nuclear maturity
 Nucleoli
 - Cellular inclusions
- Chromosomal studies
- Bone marrow

Leukemia

- Malignant proliferation of WBCs and/or precursors.
 - Classificati
 - Cell line
 - Granulocytes or Lymphocyte

 - Acute immature cells ranidly develop
 - The big three features: All three cell lines affected
 - RBC
 - WBC
 - Causas
 - Chromosomal breaks, but why?
 - Viruses, chemical exposure, radiation

Leukemia

Organs involved

- BM
- BIOOD
- Noues

- Common presenting symptoms
 - Recurrent serious infection
 - Pneumonia
 - Bieeding tendence
 - Anemia
- Fever with no obvious cause
- Bone pain

Lymphoid Malignancies

Solid' vs. 'Liquid'

- Leukemia
 - Bone marrow predominatel
- Lymphoma
- Lymph nodes
- Cell type and level of maturation
- Cell size
- CD typing
- Where did it come from in the follicle?

	Acute Myelogenous Leuke	mia	
	STEM CELL		in the
	MYELOBLAST		18
		MARROW	
	MYELOCYTE SPECIFIC GRANULATION	BONE	
Con Sta	METAMYELOCYTE		34
	BAND GRANULOCYTE		
	SEGMENTED GRANULOCYTE		

Chronic Myelocytic Leukemia

- Middle age and older
- High WBC count
- Low LAP (cells don't work)
- LOW LAP (Cells don't work
- +(9.22)
- Organs
- BM
- Blast crisis
- Soft tissue met
- Chloroma

Splenomegally in Chronic Granulocytic Leukemia

Myelofibrosis Etc

Myelofibrosis

- Scarring process
- Reticulum fibers
- Loss of marrow space
- Extramedullary hematopoiesis
- Metastatic cancer

Preleukemia

- RBC abnormalities easiest to spot.
- All cell lines have abnormal maturation.
- Chromosomal abnormalities
- Some end in leukemia
- Most end with myelofibrosis

Bleeding Disorders

- Takes three things working for hemostasis
 - Platelets
 - Clotting proteins
 - Vessels
- The question is always
 - Quantity
 - Quality

Platelet Related Bleeding

Platelet problems

- Petichae
- Bruises (purpura)
- Quantity
- **120,000-400,000**
- Quality
 - Acris
 - Donal failur

Clotting Factor Related Bleeding

- Hematoma
- Deep muscle
- Joint bleedsBleeding gums
- Diccurring guillio
- Poor wound healing
- Quantity
- Constiss
- Quality

Hemophilia A & B

Hemophilia A

- Hemophilia B
- Chuistere Dise
 - Eactor IV
- Not as severe as VIII

Generic Platelet Problems

- Quantity (thrombocytopenia)
 - Lack of bone marrow production
 - Autoimmune destruction (ITP)
 - Heparin induced thrombocytopenia
 - Lack of stabilizing factor (TTP)
- Quality
 - Aspirin induced platelet dysfunction

Von Willebrand's

- Factor VIII, 'structural
 Platelet binding
- Platelet platelet hinding
- Clinically, bleeding looks more like platelet abnormality.
- Autosomal dominant
- Multiple types
- Type I
 - Most common
 Boduced guaptitu of MME
 - Type II

 Problem with multimeric form of vWF

Lymph Node Disorders

- Reactive vs. Neoplastic
- History & Physical Exam
- Histological pattern
 - Nodal architecture recognizable?
 - Diagnostic inflammatory changes

Reactive Conditions

- Non-neoplastic reaction to Infections, necrosis, tumors
- Histological pattern
 - Follicular
 - Sinusoidal
 - Specific patterns

Neoplastic Diseases

- Classification is very important Treatment options Predicting outcome Histological pattern Hodgkin Lymphoma vs. Non-Hodgkin Lymphoma Cell type (where did it come from in the node?) Degree of differentiation (grade) Diffuse or Follicular Chang (where did second)

- Stage (extent of spread)
- - Fever
 Night sweats
 Weight loss

Non-Hodgkin Lymphoma, SLL

- Small cell lymphocytic lymphoma
- Tissue phase of CLL
- Diffuse replacement of nodal architecture Long-lived B-cells (CD19, CD20)
- Surface immunoglobulins

Non-Hodgkin Lymphoma, Follicular Pattern

- 'Centrocytic' cells (from germinal centers)
- B-cell markers Surface immunoglobulins

Burkitt's Lymphoma

- Two types
- American

- 'Starry sky' appearance
- B-cell

Hodgkin's Disease

- Reed-Sternberg cell ->

- Bimodal age distribution

- Lacunar cells ->
 Mixed-cellularity
 Lymphocyte predominate

Hodgkin's Staging

- Stage I
 - Single node or single extranodal site (I-e)
- Stage II
 - Two or more nodal regions on the same side of the diaphragm
- Stage III
 - Both sides of the diaphragm

 - +/- Extranodal (III-e)
- Stage IV
 - Multiple disseminated foci

Multiple Myeloma

- Plasma cell malignancy Term refers to holes in the bone because of nest of plasma cells ->
- The cells make an intact, or fragment, of immunoglobulin.

