

Anemias

Not a disease in itself

- Just a symptom, like a fever
- Must Understand why.
- Fix underlying cause
- Unpredicted outcomes

Anemia

Acute

- Trauma
 - Blood loss, either internal or external Reticulocytes 10-15% in a week
- Chronic
- Time to adapt
- GI bleeds, colon ca
- Increased demands of pregnancy

Anemia Workup

History, History & More History • Age, sex, medications, duration.... Physical • Nailbeds, mucus membranes.....

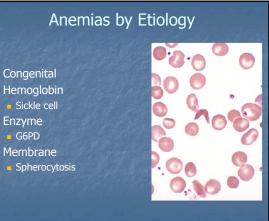
- CBC
 RBC size, shape, HgB, RDW, MCV, MCHC
 Reticulocyte count

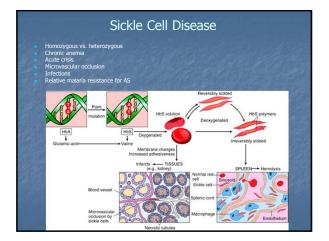
 - Chemistries Iron, B-12, Folate
- Fancy stuff

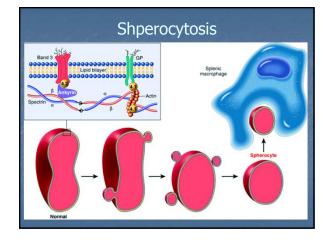
Erythrocytes

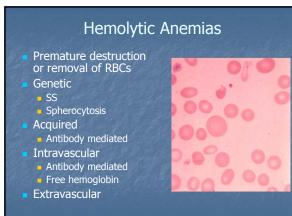
Size

- Anisocytosis (an/iso/cytosis)

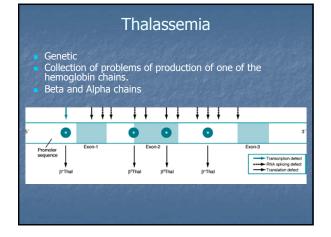

- Shape Poikilocytosis (poikilo/cytosis) Fragmented cells Hemoglobin content of cells and whole blood HBG and HCT
 MCH & MCHC
 Mean volume of the RBCs (MCV)
 Uniformity (RDW)
 Cytoplasmic inclusions


- Congenital problems
 Sickle cell among others


Anemias by Etiology


Blood loss

- Acute, no time to accommodate
 Trauma
- Massively bleeding ulcer or esophageal varices
 Chronic, slow with some adaptation
- GYN loss Ulcer
- Colon cancer RBCs are 'normocytic'
- Retic count better go up
- History and Physical
- Sickle cell Enzyme G6PD Membrane Spherocytosis

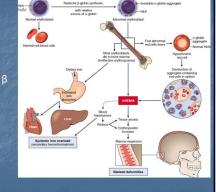


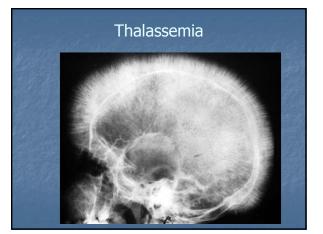
Problems of RBC Production

- Genetic related
- Nutritional deficits
- B12
 - Dietary or problems of absorption? Chronic gastritis
- Folic acid
- Chronic renal failure (no erythropoietin)
- Aplasia of RBC line in bone marrow

Nutrient Deficit

- Inadequate dietary source?
 - Absorption?
- Utilization?


Thalassemia


Microcytic Small RBCs Target cells Mismatched

production of β and α chains

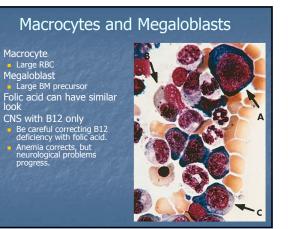
Hemoglobin globs in RBC

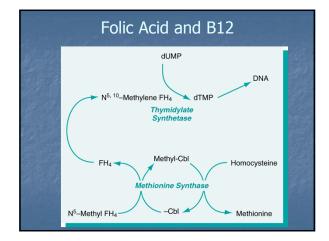
Reduced RBC survival

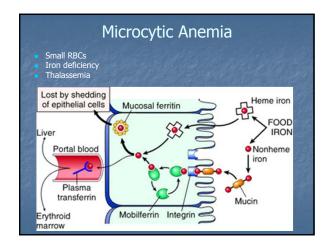
B12 Deficiency

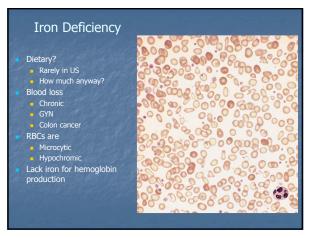
Dietary

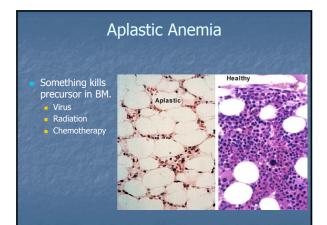
Pernicious Anemia


- Absorption
 Binding factor missing
 Chronic gastritis


- Macrocytic anemia
- Large cellsDelayed nuclear maturation


Neurological signs

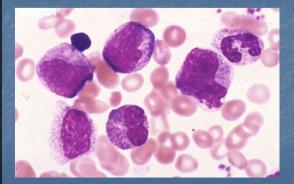

Myelin production



Anemia of Chronic Disease

- Problem is of excessive drive to store iron.
- Chronic inflammation
- Arthritis
- TB
 Even cancer
- Most of incoming iron is sent to storage • Part of the normal response to inflammation. In time anemia develops because of
- Reduced iron for utilization
- Not dietary lack or
 Failed absorption

Over Production of RBCs


- Believe it or not, it's not a good thing.
- Response to increased need
 - High altitude living
 - Lung disease
- Emphysema Over production of erythropoietin.
 - Renal disease
- Tumors
- Uncontrolled production at bone marrow level

Hemolytic Disease of Newborn

- Pregnant mother is Rh⁻, fetus is Rh⁺
- If mom should have antibodies to the Rh factor, they will cross the placenta.
- Destruction of baby's RBCs
- Previous maternal exposure
 - Miscarriage
 - Previous delivery
 - Wrong transfusion
- Treatment: Mom gets Rhogam

WBC Disorders

Quantity

- Do we have enough WBCs
- Quality
- If the number looks right, are the cells working?
- Higher than expected number (leukocytosis)
 - Cell type
 - Reactive or
 - Neoplastic
 - Benign
 Malignant
- Leukopenia

Leukopenia

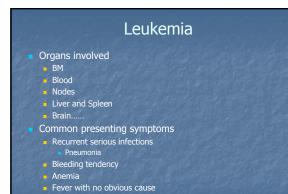
- Low WBC count
 - Under 3,000 per mm³
- Causes
 - Production problem Sick BM
 - Replacement of BM space
 - Peripheral destruction
 - Autoimmune destruction
 - Sequestration of cells
 - Large spleen

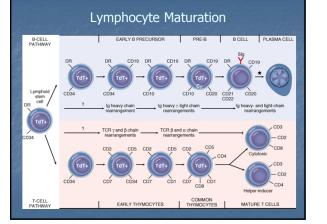
Rheumatoid arthritis

High WBC count in peripheral blood

Leukocytosis

- >12,000 per mm³
- Cell type?
- Healthy Cells?
- Reaction to need
 - Pneumonia
 - Incr granulocytes; bacterial infection, necrosis
 - Incr monocytes; TB, brucella, rickettsia
 - Incr lymphocytes; virus, tumor response
 - Incr eosinophil; allergic, parasite

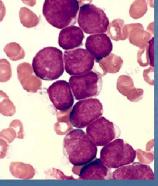

Distinguish Malignant Proliferation

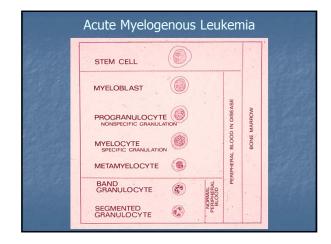

- History and physical
- Maturity of cells
 - Visual inspection of blood smear
 - Flow cytometry
 - Nuclear maturity
 - NucleoliCellular inclusions
- Chromosomal studies
- Chromosomar studie
- Bone marrow

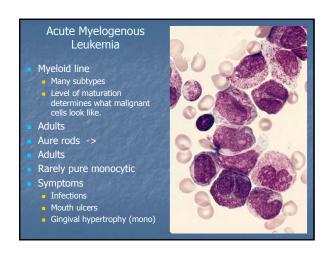
Leukemia Malignant proliferation of WBCs and/or precursors.

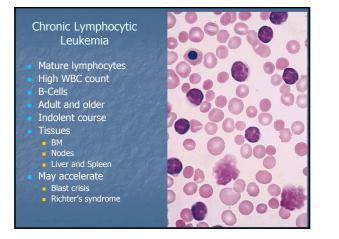
Classification

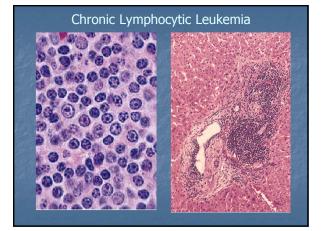
- Granulocytes or Lymphocytes
- Cell population:
- Chronic, mature, slower developing
 Acute, immature cells, rapidly developing
- The big three features: All three cell lines affected
 - RBCWBC
 - WBCPlatelets
 - Causee
 - Causes
 - Chromosomal breaks, but why?
 - Viruses, chemical exposure, radiation.....

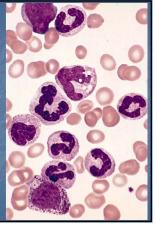

Lymphoid Malignancies

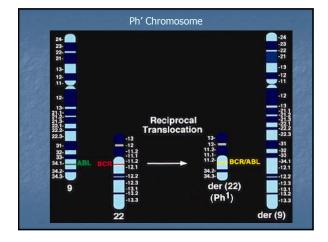

Solid' vs. 'Liquid'


- Leukemia
 - Bone marrow predominately
- Lymphoma
 - Lymph nodes
- Cell type and level of maturation
- Cell size
- CD typing
- Where did it come from in the follicle?

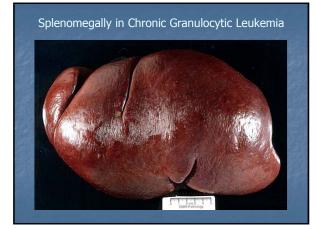

Acute Lymphobalstic Leukemia Children • Less common, but does occur in adults Precursor B leukemia • CD19, TdT + • Ig locus t(12:21) • Marked BM replacement


- Precursor T leukemia
- CD1 and TdT +
 Chromosomal breaks
- Chromosomal breaks
 Adolescent males
- +/- spleen and liver





Chronic Myelocytic Leukemia


- Middle age and older
- High WBC count

- Stem cell is malignant All phases present Low LAP (cells don't work) Ph' Chromosome
- t(9:22)
- Organs BM
- Spleen
- Blast crisis
- Soft tissue met

10/16/2012

Myelofibrosis Etc

Myelofibrosis

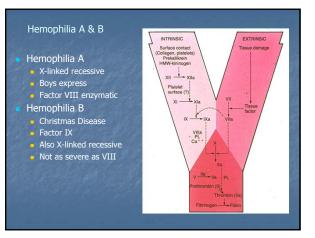
- Scarring process
- Reticulum fibers
- Loss of marrow space
- Extramedullary hematopoiesis
- Metastatic cancer

Preleukemia

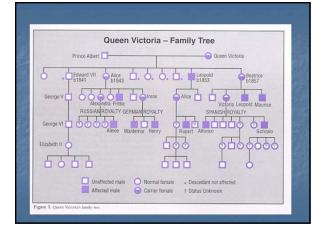
- RBC abnormalities easiest to spot.
- All cell lines have abnormal maturation.
- Chromosomal abnormalities
- Some end in leukemia
- Most end with myelofibrosis

Bleeding Disorders

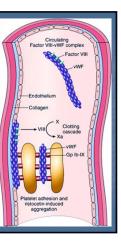
- Takes three things working for hemostasis
 - Platelets
 - Clotting proteins
 - Vessels
- The question is always
 - QuantityQuality
 - Quality


Platelet Related Bleeding Platelet problems Petichae Bruises (purpura) Quantity 120,000-400,000 Production Destruction Quality Aspirin Renal failure

Clotting Factor Related Bleeding

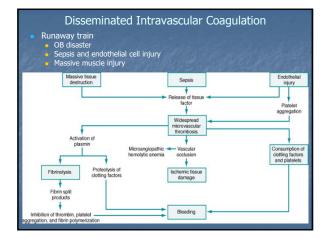

Hematoma

- Deep muscle
- Joint bleeds
- Bleeding gums
- Poor wound healing
- Quantity
- Can you make it
- GeneticsLiver disease
- Quality



Von Willebrand's

- Factor VIII, 'structural'
- Platelet binding
 Collagen of damaged vessel
 Platelet platelet binding
- Clinically, bleeding looks more like platelet abnormality.
- Autosomal dominant
- Multiple types
- Multup Type I Most common Seed quart Reduced quantity of vWF
- Problem with multimeric form of vWF

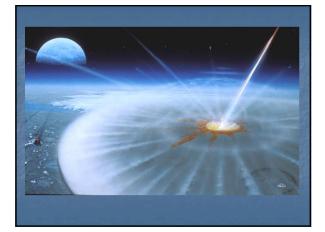


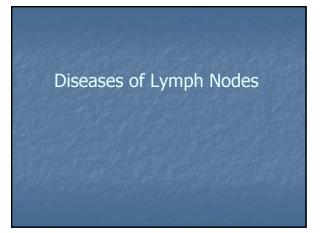
Generic Platelet Problems

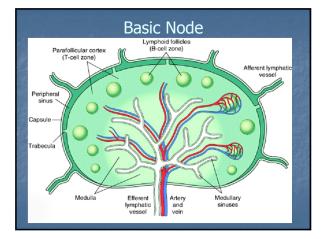
Quantity (thrombocytopenia)

- Lack of bone marrow production
- Autoimmune destruction (ITP)
- Heparin induced thrombocytopenia
- Lack of stabilizing factor (TTP)
- Quality
- Aspirin induced platelet dysfunction

10/16/2012

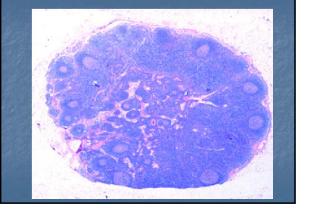



Hypercoagulation


- Thick blood
- Increased clotting proteins
- Decreased braking forces
- Endothelial injury
- Genetics
- Factor V Leiden

Lymph Node Disorders

- Reactive vs. Neoplastic
- History & Physical Exam
- Histological pattern
 - Nodal architecture recognizable? Effaced?
 - Diagnostic inflammatory changes


Reactive Conditions

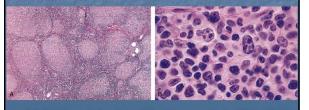
- Non-neoplastic reaction to
- Infections, necrosis, tumors
- Histological pattern
- Follicular
- Sinusoidal
- Specific patterns
 - Abscess Granuloma

Neoplastic Diseases

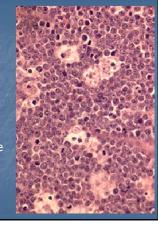
- Classification is very important Treatment options Predicting outcome Histological pattern Hodgkin Lymphoma vs. Non-Hodgkin Lymphoma Cell type (where did it come from in the node?) Degree of differentiation (grade) Diffuse or Follicular Stage (extent of spread) Know the difference between stage and grade

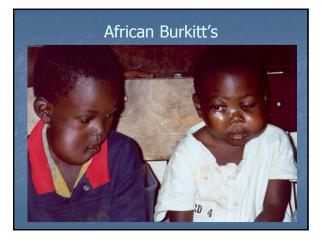

- Know the difference between stage and grade
 Systemic symptoms (so-called B symptoms)
- Fever Night sweats Weight loss

Basic Node


Non-Hodgkin Lymphoma, SLL

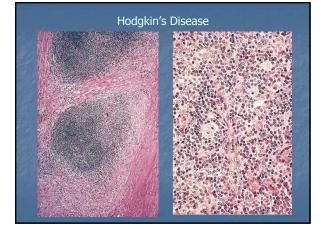
- Small cell lymphocytic lymphoma
- Tissue phase of CLL
- Diffuse replacement of nodal architecture
- Long-lived B-cells (CD19, CD20)
- Surface immunoglobulins


Non-Hodgkin Lymphoma, Follicular Pattern

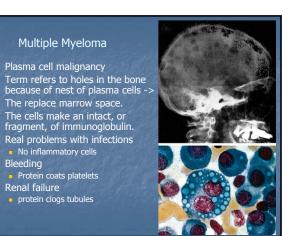

- Nodal architecture is effaced
- Nodular or follicular pattern
- 'Centrocytic' cells (from germinal centers) B-cell markers
- Surface immunoglobulins

Burkitt's Lymphoma

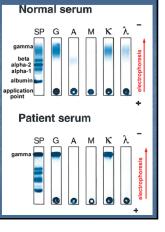
- Two types
- American
- Retroperitoneal
- African
- EB virus association?
- 'Starry sky' appearance
- B-cell



Hodgkin's Disease


- Distinguished from NHL by Reed-Sternberg cell ->
 - In its proper background
 - This is the malignant cellThe others are reactive

 - Bimodal age distribution
 - Distinctive patterns
 - Nodular sclerosis
 - Lacunar cells ->
 Mixed-cellularity
 - Lymphocyte predominate


Hodgkin's Staging

- Stage I
 - Single node or single extranodal site (I-e)
- Stage II Two or more nodal regions on the same side of the diaphragm
- Stage III
 - Both sides of the diaphragm
 - +/- Splenic involvement (III-s)
 +/- Extranodal (III-e)
- Stage IV
- Multiple disseminated foci

Multiple Myeloma

- Protein electrophoresis Large amount of abnormal protein in blood.
- Immunoglobulin
- Patient sample
- Huge gamma bandAll of it is kappa light chain

