

Anemias

Not a disease in itself

- Just a symptom, like a fever
- Must Understand why.
- Fix underlying cause
- Unpredicted outcomes

Anemia

Acute

- Trauma
 - Blood loss, either internal or external Reticulocytes 10-15% in a week
- Chronic
- Time to adapt
- GI bleeds, colon ca
- Increased demands of pregnancy

Anemia Workup

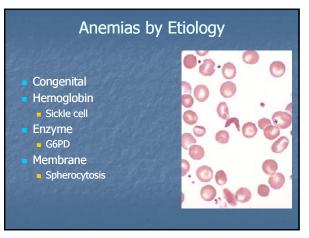
History, History & More History • Age, sex, medications, duration.... Physical • Nailbeds, mucus membranes.....

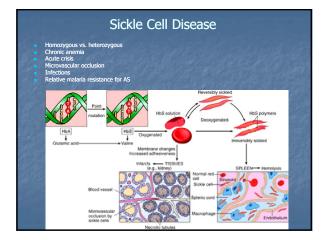
- Lab
- CBC
 RBC size, shape, HgB, RDW, MCV, MCHC
 Reticulocyte count
- Chemistries Iron, B-12, Folate
- Fancy stuff

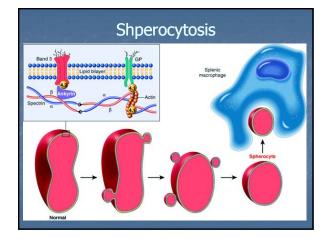
Erythrocytes

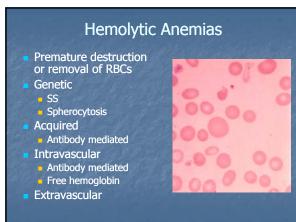
Size

- Anisocytosis (an/iso/cytosis)

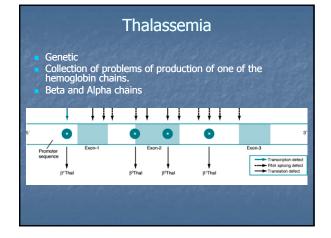

- Anisocytosis (an/iso/cytosis)
 Shape
 Poikilocytosis (poikilo/cytosis)
 Fragmented cells
 Hemoglobin content of cells and whole blood
 HBG and HCT
 MCH & MCHC
 Ment w MCHC
 Ment volume of the RBCs (MCV)
 Uniformity (RDW)
 Cytoplasmic inclusions
 Connenital moblems


- Congenital problems
 Sickle cell among others


Anemias by Etiology


Blood loss

- Acute, no time to accommodate
 Trauma
- Massively bleeding ulcer or esophageal varices
 Chronic, slow with some adaptation
- GYN loss Ulcer
- Colon cancer RBCs are 'normocytic'
- Retic count better go up
- History and Physical

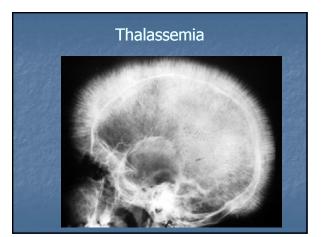


Problems of RBC Production

- Genetic related
- Nutritional deficits
- Iron
- B12
 - Dietary or problems of absorption? Chronic gastritis
- Folic acid
- Chronic renal failure (no erythropoietin)
- Aplasia of RBC line in bone marrow

Nutrient Deficit

- Inadequate dietary source?
 - Absorption?
- **Utilization?**


Thalassemia

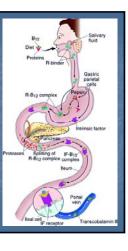
Microcytic Small RBCs
 Target cells Mismatched

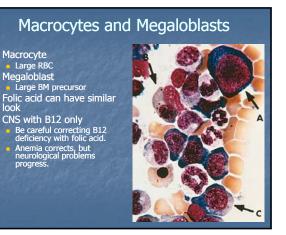
production of β and α chains

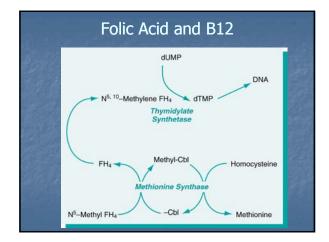
Hemoglobin globs in RBC

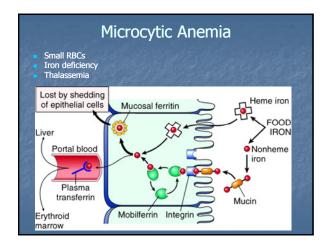
Reduced RBC survival

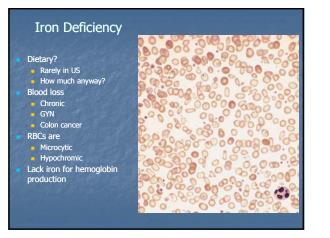
B12 Deficiency

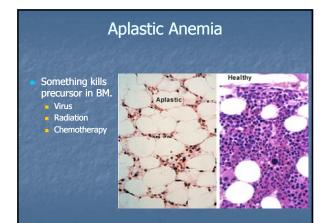

Dietary


Pernicious Anemia


- Absorption
 Binding factor missing
 Chronic gastritis
- Macrocytic anemia
- Large cellsDelayed nuclear maturation


Neurological signs


Myelin production



Anemia of Chronic Disease

- Problem is of excessive drive to store iron.
- Chronic inflammation
- Arthritis
- TB
- Even cancer
- Most of incoming iron is sent to storage
- Part of the normal response to inflammation.
 In time anemia develops because of
- Reduced iron for utilization
- Not dietary lack or
 Failed absorption

Over Production of RBCs

- Believe it or not, it's not a good thing.
- Response to increased need
 - High altitude living
 - Lung disease
- Emphysema Over production of erythropoietin.
 - Renal disease
- Tumors
- Uncontrolled production at bone marrow level

Hemolytic Disease of Newborn

- Pregnant mother is Rh⁻, fetus is Rh⁺
- If mom should have antibodies to the Rh factor, they will cross the placenta.
- Destruction of baby's RBCs
- Previous maternal exposure
 - Miscarriage
 - Previous delivery
 - Wrong transfusion
- Treatment: Mom gets Rhogam

WBC Disorders

Quantity

- Do we have enough WBCs
- Quality
- If the number looks right, are the cells working?
- Higher than expected number (leukocytosis)
 - Cell type
 - Reactive or
 - Neoplastic
 - Benign
 Malignant
- Leukopenia

Leukopenia

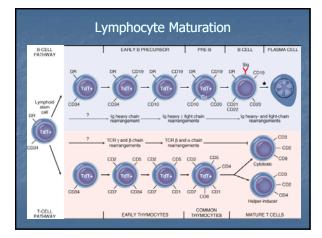
- Low WBC count
 - Under 3,000 per mm³
- Causes
 - Production problem
 Sick BM
 - Replacement of BM space
 - Peripheral destruction
 - Autoimmune destruction
 - Sequestration of cells
 - Large spleen
 - Rheumatoid arthritis

Leukocytosis

- High WBC count in peripheral blood
 - >12,000 per mm³
- Cell type?
- Healthy Cells?
- Reaction to need
 - Pneumonia
 - Incr granulocytes; bacterial infection, necrosis
 - Incr monocytes; TB, brucella, rickettsia
 - Incr lymphocytes; virus, tumor response
 - Incr eosinophil; allergic, parasite

Distinguish Malignant Proliferation

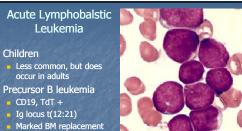
- History and physical
- Maturity of cells
 - Visual inspection of blood smear
 - Flow cytometry
 - Nuclear maturity
 - Nucleoli
 - Cellular inclusions
- Chromosomal studies
- Bone marrow

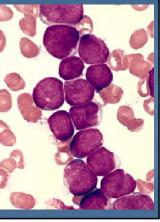

Leukemia Malignant proliferation of WBCs and/or precursors.

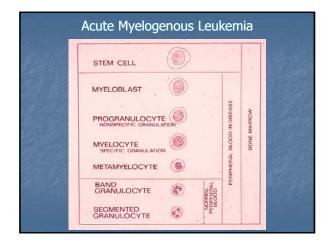
Classification

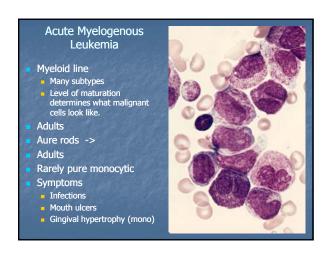
- Cell line
 Granulocytes or Lymphocytes
- Cell population:
- Chronic, mature, slower developingAcute, immature cells, rapidly developing
- The big three features: All three cell lines affected
 - RBC
 - RBC WBC
 - Platelets
 - Causes
 - Chromosomal breaks, but why?
 - Viruses, chemical exposure, radiation.....

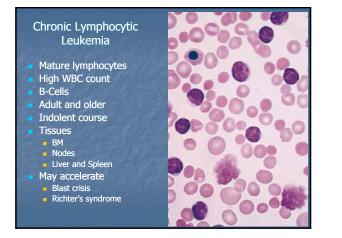
Leukemia Organs involved BM Blood Nodes Liver and Spleen Brain..... Common presenting symptoms Recurrent serious infections Pneumonia Bleeding tendency

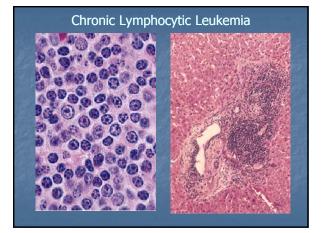

- Anemia
- Fever with no obvious cause
- Bone pain

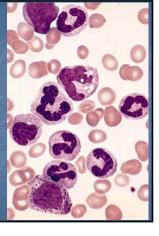

Lymphoid Malignancies

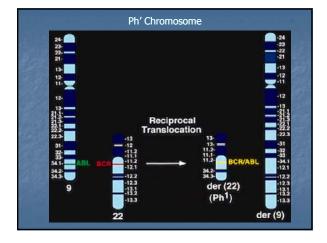

'Solid' vs. 'Liquid'

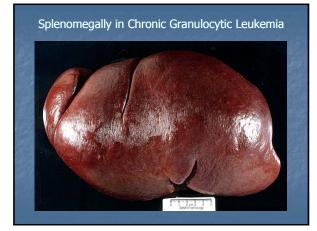

- Leukemia
 - Bone marrow predominately
- Lymphoma
 - Lymph nodes
- Cell type and level of maturation
- Cell size
- CD typing
- Where did it come from in the follicle?




- Precursor T leukemia
- CD1 and TdT +
- Chromosomal breaks
 Adolescent males
- Mediastinal mass
- +/- spleen and liver







Chronic Myelocytic Leukemia

- Middle age and older
- High WBC count
- Stem cell is malignant All phases present Low LAP (cells don't work)
- Ph' Chromosome
- t(9:22)
- Organs
- BM
- Spleen
- Blast crisis
- Soft tissue met Chloroma

Myelofibrosis Etc

Myelofibrosis

- Scarring process
- Reticulum fibers
- Loss of marrow space
- Extramedullary hematopoiesis
- Metastatic cancer

Preleukemia

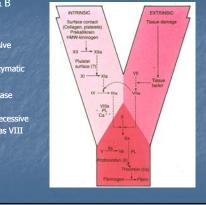
- RBC abnormalities easiest to spot.
- All cell lines have abnormal maturation.
- Chromosomal abnormalities
- Some end in leukemia
- Most end with myelofibrosis

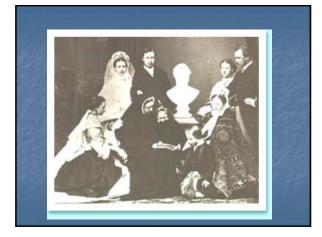
Bleeding Disorders

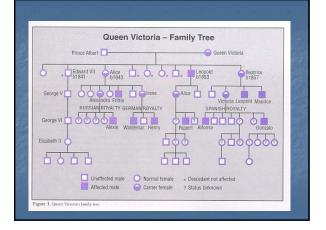
- Takes three things working for hemostasis
 - Platelets
 - Clotting proteins
 - Vessels
- The question is always
 - Quantity
 - Quality

Platelet Related Bleeding Platelet problems Petichae Bruises (purpura) Quantity 120,000-400,000 Production Destruction Quality Aspirin Renal failure

Clotting Factor Related Bleeding

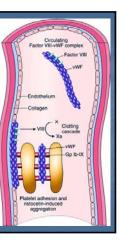

Hematoma


- Deep muscle
- Joint bleeds
- **Bleeding gums**
- Poor wound healing
- Quantity
- Can you make it Genetics
- Liver disease
- Quality

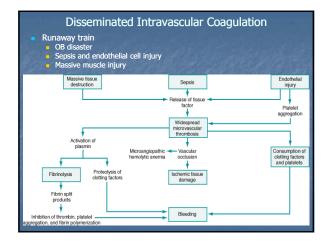


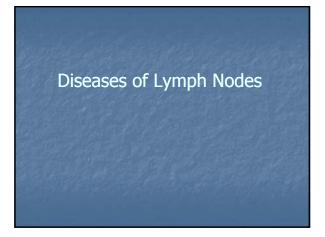
Hemophilia A & B

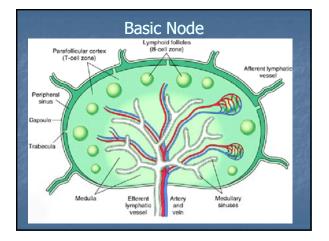
- Hemophilia A X-linked recessive
- Boys express Factor VIII enzymatic
- Hemophilia B
- Christmas Disease
- Factor IX
 - Also X-linked recessiveNot as severe as VIII

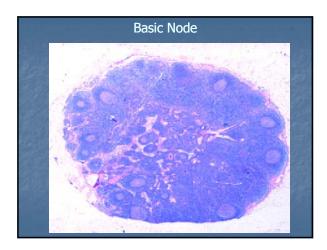


Von Willebrand's


- Factor VIII, 'structural'
- Platelet binding Collagen of damaged vessel Platelet platelet binding
- Clinically, bleeding looks more like platelet abnormality.
- Autosomal dominant
- Multiple types
- Type I
- Most common
- Reduced quantity of vWF
- Type II Problem with multimeric form of vWF

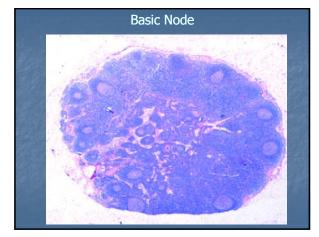

Generic Platelet Problems


Quantity (thrombocytopenia)


- Lack of bone marrow production
- Autoimmune destruction (ITP)
- Heparin induced thrombocytopenia
- Lack of stabilizing factor (TTP)
- Quality
- Aspirin induced platelet dysfunction

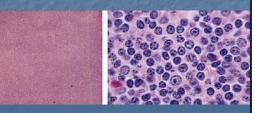
Lymph Node Disorders

- Reactive vs. Neoplastic
- History & Physical Exam
- Histological pattern
 - Nodal architecture recognizable?
 Effaced?
 - Diagnostic inflammatory changes

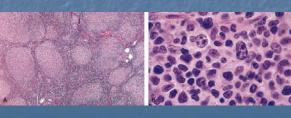

Reactive Conditions

- Non-neoplastic reaction to
- Infections, necrosis, tumors
- Histological pattern
- Follicular
- Sinusoidal
- Specific patterns
 - Abscess
 - Granuloma

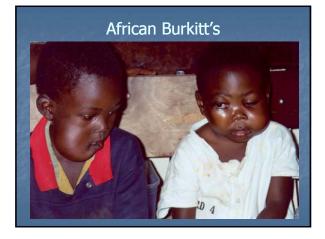
Neoplastic Diseases


- Classification is very important Treatment options Predicting outcome Histological pattern Hodgkin Lymphoma vs. Non-Hodgkin Lymphoma Cell type (where did it come from in the node?) Degree of differentiation (grade) Diffuse or Follicular Stage (extent of spread)

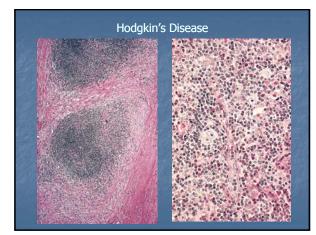
- Stage (extent of spread) Know the difference between stage and grade Systemic symptoms (so-called B symptoms)
- Fever Night sweats Weight loss


Non-Hodgkin Lymphoma, SLL

- Small cell lymphocytic lymphoma
- Tissue phase of CLL
- Diffuse replacement of nodal architecture Long-lived B-cells (CD19, CD20)
- Surface immunoglobulins



Non-Hodgkin Lymphoma, Follicular Pattern


- Nodal architecture is effaced
- Nodular or follicular pattern
- 'Centrocytic' cells (from germinal centers) B-cell markers
- Surface immunoglobulins

Burkitt's Lymphoma Two types American Retroperitoneal African Jaw EB virus association? 'Starry sky' appearance **B-cell**

Hodgkin's Disease Distinguished from NHL by Reed-Sternberg cell -> In its proper background This is the malignant cell The others are reactive Bimodal age distribution Distinctive patterns Nodular sclerosis Lacunar cells -> Mixed-cellularity Lymphocyte predominate

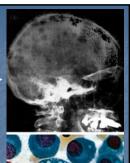
Hodgkin's Staging

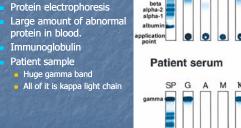
Stage I

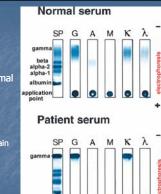
Single node or single extranodal site (I-e)

Stage II

Two or more nodal regions on the same side of the diaphragm


Stage III


- Both sides of the diaphragm
- +/- Splenic involvement (III-s)
 +/- Extranodal (III-e)
- Stage IV
 - Multiple disseminated foci


Multiple Myeloma

Multiple Myeloma

- Plasma cell malignancy Term refers to holes in the bone because of nest of plasma cells ->
- The replace marrow space. The cells make an intact, or fragment, of immunoglobulin.
- Real problems with infections No inflammatory cells
 Bleeding
- Protein coats platelets
- Renal failure protein clogs tubules

